Установка температурных регуляторов в домах многоквартирного типа
Чтобы установить регулятор температуры радиатора батарей отопления в многоквартирном доме, необходимо разобраться с тем, что представляет собой учет тепла в такой конструкции.
Трубопроводы подачи и отдачи оснащены специальными подпорными шайбами, перед и после каждой из которых располагаются регулирующие давление датчики. Благодаря тому, что диаметр этих датчиков известен, появляется возможность рассчитать расход теплоносителя, циркулирующего через датчики. Как результат, разница, полученная между расходом воды в трубопроводах подачи и отдачи, будет отображать объем израсходованной жильцами воды.
Контроль температуры теплоносителя в системе отопления на обоих участках призваны осуществлять температурные датчики. Поэтому, зная то, в каком объеме расходуется тепло и чему равна его температура, можно легко рассчитать то количество тепла, которое осталось в помещении.
Для того чтобы регулировать работу отопления было проще, требуется постоянно следить за состоянием температуры. Сделать это поможет один из двух способов:
- Монтаж запорного клапана. Такое устройство призвано частично перекрывать систему трубопровода в том случае, если температура обратки является выше заданной. Представляет собой обычный электромагнитный клапан. Подобный вариант станет подходящим тех домов, где система отопления является относительно простой и не отличается большим объемом теплоносителя.
- Устройство клапана трехходового типа. Этот прибор также позволяет регулировать текущий расход теплоносителя, однако функционирует он несколько иначе: в том случае, если температура воды превышает норму, то она направляется сквозь открытый клапан в трубопровод подачи в большем количестве. Путем смешения с остывшей водой общая температура снизится, а необходимая скорость циркуляции сохранится.
Подобная конструкция может несколько отличаться в разных системах. Схема устройства может быть оснащена несколькими температурными датчиками, а также одним или двумя насосами циркуляции. Кроме того, могут присутствовать клапаны механического типа, с помощью которых можно осуществлять контроль над работой отопления без подачи какого-либо питания.
Монтаж механических регуляторов не несет в себе особой сложности. Чтобы установить такой прибор, требуется лишь соединить его с фланцем в узле элеватора. Немаловажным является и тот факт, что цена таких устройств является значительно более низкой по сравнению с электронными механизмами.
Основные сферы использования, виды и примеры конкретных моделей
Подобные аппараты активно используются в водопроводных и водонагревательных системах, в автомобилестроении, на котельных каждого типа и отопительных станциях. Помимо двух основных модификаций, существуют сильфонные или автомобильные, где за термическую регулировку отвечает термостат. Как пример подобных систем, можно привести модели ТРЖ и HND: такие, как наидоступнейшая ТРЖ-М1 . У различных моделей, видов, модификаций и конфигураций автоматических регуляторов есть свои преимущества и недостатки и подбираются в зависимости от ситуации. Материал изготовления(чугун или сталь) немаловажен. Ниже приведена взятая для наглядности таблица параметров модели Р-2.Т.
Регуляторы давления в отоплении
Группа безопасности отопления
В закрытой системе теплоснабжения помимо температуры есть еще один не менее важный показатель – давление. В результате нагрева теплоносителя происходит его расширение. С одной стороны это явление способствует лучшей циркуляции горячей воды. Но если не установить регулятор давления для отопления – может произойти аварийная ситуация.
Нормальное значение этого параметра колеблется от 2 до 5 атм. в зависимости от типа отопительной системы. В централизованных магистралях возможно кратковременное превышение давления до 10 атм. Для его стабилизации и предназначен регулятор давления системы отопления.
Принцип работы гидрострелки
В настоящее время есть несколько типов этих приборов, которые отличаются не только внешне, но и функциональными возможностями:
- Спускной клапан. Удаляет избыток теплоносителя для компенсации давления;
- Воздухоотводчик. Предназначен для своевременной ликвидации воздушных пробок. Они формируются из-за перегрева горячей воды и могут привести к возникновению аварийных ситуаций;
- Гидрострелка. Этот регулятор давления воды в системе отопления применяется не только для коллекторных систем, но и в двухтрубных схемах. Он стабилизует давление между подающей и обратной трубой теплоснабжения.
Кроме гидрострелки все остальные приборы для регулирования давления воды в системе отопления имеют изменяемые параметры срабатывания. Т.е. пользователь может сам выставить предельные значения давления, при появлении которых активируется регулирующий элемент.
Расширительный бак для стабилизации давления отопления
Принцип работы расширительного бака
Ключевое влияние на стабильность работы закрытой системы отопления с принудительной циркуляцией оказывает расширительный бак. Он предназначен для автоматической компенсации возникшего избыточного давления на трубы и радиаторы.
Конструктивно это устройство для регулирования давления в отоплении представляет собой емкость, разделенную на две части эластичной мембранной. Одна из полостей с помощью патрубка подключается к отоплению, а во вторую нагнетается воздух. При этом значение давление во второй должно быть меньше максимально допустимого на 5-10%.
Принцип работы мембранного регулятора давления системы отопления можно описать следующим алгоритмом:
- Давление в системе нормальное – мембрана не изменяет своего положения.
- Произошло критическое расширение теплоносителя. Одновременно с этим мембрана смещается в сторону воздушной камеры, тем самым увеличивая общий объем теплоснабжения. Происходит компенсация избыточного давления.
- Резкое падение объема теплоносителя. Регулятор давления воды в отоплении уменьшает объем путем смещения мембраны в сторону водяной камеры. Это происходит под воздействием давления воздушной камеры.
Таким способом происходит автоматическое регулирование давления в отопительной системе. При выборе модели расширительного бака необходимо учитывать возможность замены эластичной мембраны. Есть модели, где это может сделать сам пользователь. Но для баков с небольшим объемом такой возможности нет. После двух-трех сезонов эксплуатации приходится демонтировать старый модуль отопления и устанавливать новый.
Как правильно рассчитать параметры устройств для регулирования давления и температуры отопления? Для этого рекомендуется воспользоваться специализированными программными комплексами. Предварительно вносятся характеристики дома (степень утепления), графическая схема расположения труб, радиаторов и других компонентов теплоснабжения. На основе полученных данных программа даст оптимальные параметры всех элементов.
В видеоматериале можно ознакомиться со спецификой подключения комнатного регулятора температуры в отоплении:
Виды давления в трубах отопления
Давление в трубах отопления позволяет определить, насколько правильно функционирует вся система.
Давление в трубах принято разделять на несколько видов:
- Статическое (манометрическое) – физическое воздействие на стенки трубопровода, оказываемое теплоносителем в спокойном состоянии. В летний период, когда системы отопления в домах не эксплуатируются, по показателям манометром можно определить статическое давление.
- Динамическое (рабочее) — давление воды с учётом нагрева и движения по замкнутому периметру. Динамическое давление всегда выше статического из-за расширения жидкости под воздействием температуры.
- Допустимое (максимальное) — предельно возможное давление в системе, при котором все оборудование работает исправно.
Прописанные нормы и правила регламентируют, какими должны быть показатели температуры и влажности в отопительном контуре.
Согласно требованиям СНиП, давление и температура горячей воды в замкнутой системе должны быть такими, чтобы воздух в комнатах стабильно нагревался до 20-22°С при относительной влажности 30-45%.
Чем больше этажей в доме, тем выше уровень статического давления, для того чтобы вода в трубах равномерно поднималась до верхних этажей используют мощные насосы.
Каким должно быть рабочее давление
Рабочее давление — это сумма статического и динамического давления. От его значения зависит безопасность работы всей отопительной линии.
С учётом различных факторов, рабочее давление в системах должно составлять:
- 2-4 атмосферы – для зданий до 5 этажей;
- 5-7 атмосфер – для домов в 9-10 этажей;
- от 12 атмосфер – для зданий от 10 этажей и выше.
На практике этих показателей достичь очень сложно, поскольку на давление воды влияют различные параметры:
- Мощность рабочего оборудования – циркуляционных насосов и котлов, обеспечивающих принудительное движение и нагрев теплоносителя.
- Диаметр труб. Чем он больше, тем ниже давление воды, в соответствии с законами физики. Сразу после ввода дома в эксплуатацию во всех квартирах наблюдается одинаковое давление. Но совладельцы могут самовольно менять трубы и радиаторы, что обусловливает разницу между нормативными и реальными показателями.
- Степень изношенности, исправность системы. Наличие протечек снижает давление из-за потери объёма циркулирующей воды. Накипь и налёт на трубах повышает давление, но снижает производительность из-за ухудшения теплопроводности металлических элементов.
- Этажность и удалённость квартиры от стояка. Хотя в проектной документации предполагается, что во всех частях дома должно быть одинаковое давление в трубах, на практике на верхних этажах и угловых квартирах оно всегда ниже.
Производительность
При выборе и покупке газовой колонки очень важно обращать внимание на ее производительность. Именно от этого будет зависеть, будет ли техника способна полноценно обслуживать вас. Этот показатель может быть 6-11 л/мин, 12 или 14 л/мин, и обычно он зависит от мощности горелки, которая составляет 11-19 кВт, 22-24 кВт или 28-30 кВт, соответственно
Этот показатель может быть 6-11 л/мин, 12 или 14 л/мин, и обычно он зависит от мощности горелки, которая составляет 11-19 кВт, 22-24 кВт или 28-30 кВт, соответственно
Чем интенсивнее пламя, тем больше производительность. Для обслуживания одного смесителя достаточно колонки с минимальной мощностью, если же горячая вода нужна в ванной и на кухне и, может быть, второй уборной в доме, понадобиться техника, которая сможет нагревать не менее 12 л/мин
Этот показатель может быть 6-11 л/мин, 12 или 14 л/мин, и обычно он зависит от мощности горелки, которая составляет 11-19 кВт, 22-24 кВт или 28-30 кВт, соответственно. Чем интенсивнее пламя, тем больше производительность. Для обслуживания одного смесителя достаточно колонки с минимальной мощностью, если же горячая вода нужна в ванной и на кухне и, может быть, второй уборной в доме, понадобиться техника, которая сможет нагревать не менее 12 л/мин.
Совет специалиста: лучше всего выбирать колонку с производительностью немного большей, чем требуется. Эксплуатация колонки постоянно на максимальной мощности может привести к быстрому износу.
Экономическая эффективность от автоматизации ИТП
При проектировании ИТП кроме требований СНиП проектировщик должен руководствоваться техническими условиями на теплоснабжение объекта с четкими данными о гидравлических параметрах и температурных графиках. Вне зависимости от изготовителя системы автоматического регулирования могут включать комплект регуляторов с датчиками, запорно-регулирующие и смесительные клапаны, насосы, шкафы автоматики и управления, КИП, прочую арматуру. Одним контроллером там, где это необходимо, управляются системы отопления и ГВС.
Рассмотрим применение регуляторов температуры в жилых зданиях. При расчете экономической эффективности применения регулятора температуры отопления с регулирующим гидроэлеватором для 108-квартирного здания экономия составляет 11%, установка оборудования окупается за 0,78 года. В расчете использован только один фактор – перерасход тепла из-за осенне-весенних перетопов. Если второй контур системы регулирования задействован на регулирование тепловой энергии для подогрева горячей воды экономический эффект еще возрастет.
Экономические показатели системы регулирования отопления и ГВС: суммарная экономия составляет более 15%, окупаемость от внедрения системы регулирования – менее 0,5 года.
Расчеты показывают, что для домов с числом квартир 80 и более затраты на внедрение систем автоматического регулирования окупаются менее, чем за 1 год. На объектах, где удельные затраты на энергосберегающее оборудование и его монтаж на 1 Гкал больше срок окупаемости увеличивается, например при числе квартир менее 80 или на небольших объектах социальной сферы. Рассмотрим для примера детский сад. Система автоматического регулирования отоплением включает регулирующий гидроэлеватор и микропроцессорный блок управления им по сигналам с термодатчиков. Окупаемость проекта – 0,94 года. Преимущества данной схемы:
– высокая надежность и безаварийность даже при временном пропадании электропитания, т.к. элеватор выполняет и функцию насоса; – возможность введения гибкого графика регулирования с учетом ночного времени, выходных и праздничных дней на весь отопительный сезон; – оптимизация температурного комфорта в помещениях благодаря возможности задания предварительного натопа перед рабочим временем; – обязательный контроль параметров обратного теплоносителя.
Если на аналогичном объекте имеется подготовка горячей воды и установить регулятор расхода на ГВС, то удельные затраты на автоматизацию теплопункта будут ниже: электронный блок используется тот же, добавляется к нему датчик температуры горячей воды и для ГВС дополнительно используется запорно-регулирующий клапан. Экономический эффект возрастает до 30% при окупаемости 0,72 года.
Все технико-экономические расчеты, особенно при внедрении новых проектных решений, мы поверяем с помощью специальных средств мониторинга, данных коммерческого приборного учета.
В заключении хотелось бы отметить, что сбережение топливно-энергетических ресурсов на основе использования систем автоматического программного регулирования теплопотребления реализуемо и экономически оправдано. Этому процессу нет альтернативы.
Приобрести широкий спектр современного оборудования для автоматизации по выгодным ценам можно в нашем фирменном магазине .
В настоящие время доля оплаты за ОТОПЛЕНИЕ, наибольшая строчка в квитанции за коммунальные платежи. В связи с этим у многих собственников появляется заинтересованность в возможности снижения этих расходов.
Одним из способов для этого, оснастить систему отопления дома автоматическим ИТП (погодным регулятором).Система погодного регулирования отопления оправдывает себя только в случае, если в доме уже установлен теплосчетчик (узел учета тепловой энергии).
Энергетикам сложно соблюдать температурный график (температуры на подающем и обратном трубопроводах отопления в зависимости от температуры уличного воздуха). Их цель дать как можно больше тепла для потребителей, для того чтобы было достаточно температуры всем домам расположенным в районе вокруг ЦТП (ближайшим, и удаленным). Так же на ЦТП параметры теплоносителя не меняться в взаимности от времени суток (солнечный день, ночь, день недели и т.д.)
Виды терморегуляторов и принципы работы
Терморегуляторы разделяют на три вида:
- механические, с ручной настройкой подачи теплоносителя;
- электронные, управляемые выносным термодатчиком;
- полуэлектронные, управляемые термоголовкой с сильфонным устройством.
Главное достоинство механических приборов – невысокая стоимость, простота в эксплуатации, четкость и слаженность в работе. Во время их эксплуатации нет необходимости использовать дополнительные источники энергии.
Модификация позволяет в ручном режиме регулировать количество теплоносителя, поступающего в радиатор, тем самым контролируя теплоотдачу батарей. Прибор отличается высокой точностью регулировки степени нагрева.
Существенный недостаток конструкции заключается в том, что в ней отсутствует разметка для регулировки, поэтому производить настройку агрегата придется исключительно опытным путем. С одним из методов балансировки мы ознакомимся ниже
Основные элементы регулятора механического типа – термостат и термостатический клапан
Механический терморегулятор состоит из следующих элементов:
- регулятора;
- привода;
- сильфона, заполненного газом или жидкостью;
Вещество, содержащееся в сильфоне, играет ключевую роль. Как только положение рычага термостата меняется, вещество перемещается в золотник, тем самым регулируя положение штока. Шток под действием элемента частично перекрывает проход, ограничивая попадание теплоносителя в батарею.
Электронные термостаты – более сложные конструкции, в основе которого лежит программируемый микропроцессор. С его помощью можно задавать определенную температуру в комнате путем нажатия нескольких кнопок на регуляторе. Некоторые модели многофункциональны, пригодны для управления котлом, насосом, смесителем.
Строение, принцип работы электронного прибора практически не отличается от механического аналога. Здесь термостатический элемент (сильфон) имеет форму цилиндра, его стенки гофрированы. Он заполнен веществом, которое реагирует на колебания температуры воздуха в жилище.
По время повышения температуры происходит расширение вещества, в результате чего на стенки образуется давление, что способствует движению штока, который автоматически закрывает клапан. При движении штока проводимость клапана увеличивается или уменьшается. Если температура снижается, то рабочее вещество сжимается, в результате сильфон не растягивается, а клапан открывается, и наоборот.
Сильфон обладают высокой прочность, большим рабочим ресурсом, выдерживают сотни тысяч сжатий на протяжении нескольких десятков лет.
Основной элемент электронного регулятора – термодатчик. В его функции входит передача информации о температуре окружающей среды, в результате чего система генерирует необходимое количество тепла
Электронные терморегуляторые условно разделяют на:
- Закрытые терморегуляторы для радиаторов отопления не обладают функцией автоматического определения температуры, поэтому они настраиваются в ручном режиме. Отрегулировать возможно температуру, которая будет поддерживаться в комнате, и допустимые колебания температуры.
- Открытые термостаты можно запрограммировать. Например, при понижении температуры на несколько градусов режим работы может измениться. Также возможно настроить время срабатывания того или иного режима, отрегулировать таймер. Используются такие приборы преимущественно в промышленности.
Электронные регуляторы работают от батареек или специального аккумулятора, который идет в комплекте с зарядкой. Полуэлектронные регуляторы идеально подходят для бытовых целей. Они идут с цифровых дисплеем, который отображает температуру помещения.
Принцип действия полуэлектронных устройств для регулировки теплоотдачи радиатором позаимствован из механических моделей, поэтому его регулировка осуществляется вручную
Устройство и принцип работы терморегулятора
Если батарея отопления электрическая с терморегулятором представляет собой одно целое, то прибор для водяного радиатора отопления устанавливается отдельно.
Конструктивно терморегулятор состоит из 2-х элементов:
- Клапан. В металлическом корпусе находятся запорный механизм: шток, седло и конус (тарельчатый клапан, золотник). Запорный механизм, опускаясь или поднимаясь, изменяет напор теплоносителя.
- Термоголовка, управляющая работой клапана. Состоит из сильфона, наполненного газом или жидкостью, а также регулятора. Рабочее вещество сильфона реагирует на изменение температуры, меняя свой объем, что тем самым отражается на положении регулятора. Сильфон является очень долговечным элементом, выдерживающим многократные циклы сжатия и расширения.
Устройство термоголовки для системы отопления
Системы отопления и регулирование температуры
Отопительные системы могут быть нескольких видов. водяные, паровые, воздушные и комбинированные. Регуляторы температуры могут устанавливаться на любую из них.
Электрическое отопление удобное, практичное, безопасное и надежное. Регулировка температуры происходит в зависимости от заданной и действительной температуры.
Механические регуляторы очень просты в использовании и стоят намного дешевле электронных аналогов . Регулирующие механизмы устанавливаются на отопительные приборы к магистрали подачи теплоносителя. Принцип работы механического регулятора очень прост, потому что датчик встроен в клапан, а регулировка температуры происходит за счет увеличения и уменьшения теплоносителя в радиаторе.
Давление в отопительной системе и его нормы
Давление в центральной системе отопления подразделяют на опрессовочное и рабочее.
Опрессовочным называют давление, которое создается в системе при проведении ее испытании после выполнения каких-либо монтажных или ремонтно-восстановительных работ. Как правило, проводится опрессовка и перед началом очередного отопительного сезона. Этот комплекс мероприятий предполагает ограниченную по времени повышенную нагрузку на элементы системы. Подобный процесс необходим для того, чтобы проверить работоспособность отопления, надежность соединений в контурах, целостность и должную проходимость труб и радиаторов системы, так как в процессе ее работы могут возникнуть перепады давления.
Проведение опрессовки системы отопления в теплопункте многоквартирного дома
Рабочим считается такое давление, при котором система должна функционировать постоянно, в течение всего отопительного периода.
Рабочий показатель давления включает статическую и динамическую составляющие:
- Статическим является то давление, которое создается под естественным напором воды, поднимающейся по каналам труб. Чем выше стояки (соответственно, чем больше этажей в доме), тем значительнее ее параметр.
- Динамическим называют искусственно созданное давление, которое возникает при воздействии на поток воды циркуляционных насосов.
В многоэтажных строениях теплоноситель в системе отопления чаще всего сначала подается на верхние этажи, и для его подачи без насосов не обойтись. Причем, чем выше здание, тем больший должен быть напор, а поток приобретает весьма немалую скорость. Для девятиэтажных домов норматив давления установлен в 5÷7 технических атмосфер (бар), что соответствует примерно 50÷70 метрам водяного столба или, если исходить из стандартов системы СИ — 0,5÷0,7 МПа. Если дом имеет большее количество этажей, то давление требуется уже выше —7÷10 технических атмосфер (70÷100 м вод. ст. или 0,7÷1,0 МПа). Рабочее давления в отопительном контуре самого верхнего и нижнего этажа не должно различаться более чем на 10%, а опрессовочное – на 20%.
Чаще всего, в среднестатистическом городском многоэтажном доме, рабочее давление на трубе подачи теплоносителя составляет 6 атмосфер, а на «обратке» — 4÷4,5 атмосфер. Однако, нужно отметить, что на показатели давления в системе влияет много факторов. В том числе важна и чистота внутренних каналов труб магистралей и контуров.
В автономной системе частного дома или квартиры за давлением и температурой теплоносителя должен следить сам владелец. Для этого в области котла устанавливаются специальные приборы (манометр и термометры), которые предназначены для контроля за этими параметрами. Чаще всего в настоящее время в автономных системах необходимое давление создается с помощью циркуляционного насоса, то есть принудительно. Хотя, и системы с естественной циркуляцией (за счет разницы плотности горячей и остывшей воды) применяются все еще довольно широко.
Установка терморегулятора на радиатор отопления собственными силами
Следует удостовериться, что параметры терморегулятора для радиатора отопления соответствуют изложенным выше критериям.
Если учитывать эти расстояния, работа регулятора будет корректнойДиагональная схема подключения радиатораВ однотрубной системе применяют байпас. Два шаровых крана пригодятся для оперативного демонтажа
С установленного клапана снимают защитный пластиковый колпачок. Сам термостат для радиатора отопления вставляют до щелчка в фиксирующее устройство. В некоторых моделях необходима подтяжка гайки ключом без чрезмерных усилий.
Эту головку можно установить на вентиль без инструментовРегулировка также выполняется вручную
Перед настройкой устраняют причины, способные нарушить нормальную работу сильфона, или датчика температуры для отопления. Далее устанавливают максимальную производительность батареи. После достижения уровня приблизительно на 4-5 °C выше комфортных условий поток теплоносителя перекрывают. Когда температура снизится до нужного значения, головку медленно поворачивают до появления характерного шума.
Эта таблица демонстрирует настройки и значения, рекомендованные производителем. Пользователь может сделать коррекции на основе собственных предпочтений
Принцип действия кранов отопления
Использование запорной арматуры в системе отопления
Принцип работы крана удобнее рассмотреть на примере вентиля шарового типа. Для управления им достаточно от руки повернуть барашек. Суть работы такого механизма заключается в следующем:
- При механическом повороте ручки крана импульс передается на запорный элемент, выполненный в виде шара с отверстием посередине.
- За счет плавного вращения на пути потока жидкости появляется или исчезает преграда.
- Она либо полностью перекрывает имеющийся проход, либо открывает его для свободного прохождения теплоносителя.
Регулировать объемы поступающей в батареи жидкости с помощью шарового крана не представляется возможным.
Вентиль, позволяющий делать это, по своему принципу действия заметно отличается от шарового аналога. Его внутреннее устройство позволяет плавно перекрывать проходное отверстие за несколько оборотов. Сразу после изменения балансировки положение вентиля фиксируется, чтобы случайно не нарушить настройки прибора. Как правило, такие краны ставятся на выходном патрубке радиатора.
5 Способы настройки механических клапанов
Если с настройкой полностью автоматических устройств не возникает каких-либо сложностей, то правильно отрегулировать работу механических клапанов бывает затруднительно. Необходимо измерять не только температуру теплоносителя, но и воздуха в помещении. В комнате закрывают все двери и окна, что позволяет свести теплопотери к минимуму.
Измеряют температуру воздуха в помещении, записывают полученные данные, после чего до упора отворачивают клапан термостата. Теплоноситель заполнит батарею полностью, а показатель теплоотдачи у прибора будет максимальным. Через час выполняют повторное измерение температуры и сравнивают ее с предварительными данными.
Головку регулятора до упора поворачивают в обратную сторону. Как только температура воздуха в комнате достигнет оптимальных значений, клапан вновь открывают до тех пор, пока из батареи не будет слышен шум текущей воды, а сам радиатор не начнет быстро нагреваться. В этот момент вращение регулятора прекращают, фиксируя зажимом его положение.
Конструктивные элементы
Внешне регулятор напоминает самый обычный кран, устанавливаемый на входе или выходе трубопроводов из радиаторов, однако вместо классического вентиля данные устройства оснащены быстросъемной гайкой, с помощью которой на корпусе крепится термоэлемент.
Регуляторы температуры отопления для радиаторов и аналогичные контролирующие устройства для отопительных приборов, как правило, состоят из двух основных систем:
- Терморегулирующий вентиль (клапан).
- Механизм, который способствует воздействию на клапанный шток (термостатическая головка или термоэлемент).
Термостатический клапан требуется для эффективного регулирования передачи тепла от прибора отопления. При этом его количество, которое проходит через радиатор, должно постоянно изменяться в зависимости от температуры помещения.