Схема подключения и назначение импульсных ограничитилей перенапряжения

Классические схемы подключения защиты от импульсов перенапряжения

Перед установкой в сети электропитания УЗИП необходимо осуществить монтаж контура заземления здания или убедится в его наличии и полном соответствии требованиям ПУЭ. Желательно пригласить контрольно-измерительную лабораторию для проверки соответствия основных технических параметров цепей проводки и заземления:

  • Сопротивления петли фаза – ноль;
  • Сопротивления заземляющего контура;
  • Сопротивления изоляции проводников и другие технические характеристики.

При монтаже контура заземления учитывается много факторов, структура грунта, материал и геометрические формы заземлителей и шин, это требует детального рассмотрения в отдельной статье.

Большое роль имеет функциональное назначение здания или сооружения, какое оборудование в нем эксплуатируется, в зависимости от этого выдвигаются различные требования к заземлению:

  • Для объектов с аппаратурой связи сопротивление растеканию токов должно не более 4 Ом. Для надежного срабатывания разрядников в цепях защиты воздушных линий связи не более 2 Ом;
  • На трансформаторных подстанциях по требованиям ПУЭ (1.7.101) не более 4 Ом;
  • В контурах заземления для молниеотводов не более 10 Ом (РД 34.21.122-87, п. 8);
  • Для жилых домов и административных зданий с сетями 380 или 220 В с локальным заземлением по системе TN-C-S сопротивление растекания не более 30 Ом, ПУЭ (1.7.103).

Обратите внимания, что в цепи УЗИП иногда ставят плавкие предохранители, это повышает вероятность эффективной защиты. Особенности этого стандарта схемы заземления в том, что на входе Нейтральная шина соединяется с шиной контура заземления.

Существуют и другие стандарты подключения заземления

В данном случае шины заземления и нейтрали разделены, не имеют общего контакта

В схемах стандарта TN—S фаза и нейтраль к УЗИП подключаются через защитные автоматы

В современных сетях проводки чаще всего применяют стандарты заземления TN-C-S, но на некоторых объектах встречаются схемы стандарта TN-C.

На схеме стандарта TN-C показаны два варианта подключения УЗИП слевой стороны Т – образное подключение и с правой стороны V – образное. Считается что вариант V эффективней снижает импульсы перенапряжения и скорость срабатывания повышается.

При заземлении не соответствующем установленным нормативам ПУЭ аппараты УЗИП могут не сработать. Для защиты УЗИП от короткого замыкания в конструкции некоторых моделей или отдельно в цепи устанавливают автоматический выключатель или плавкий предохранитель. Так как ОПН используются чаще, особенно на бытовом уровне рассмотрим этот вариант приборов более подробно.

Выбор основных параметров ОПН

В этой статье речь пойдет о выборе основных параметров ОПН в сети на напряжение 110 кВ. Отдельно хотелось бы поблагодарить за предоставленный расчет Коршунова Сергея Ивановича, надеюсь, данный расчет вам поможет в выборе ОПН.

Предварительно был выбран ОПН-У-110/84-2УХЛ1, теперь данный ОПН нужно проверить соответствует ли он следующим условиям.

1. Выбор наибольшего длительного допустимого рабочего напряжения ОПН.

В соответствии с таблицей 1 наибольшее рабочее напряжение электрооборудования в соответствии с для сетей напряжением 110 кВ составляет:

Uнс=1,05*72,8=76,44 кВ.

Для ОПН-У-110/84-2УХЛ1 Uнд=84 кВ.

Uнд=84>76,44 кВ

2. Выбор ОПН по условиям взрывобезопасности.

Номинальный взрывобезопасный ток в соответствии с п. 3 должен быть больше:

Iвб>1,20*Iкз=1,2*11,5=13,8 кА

Для ОПН-У-110/84-2УХЛ1 Iвб=40 кА.

40>13,8 кА

3. Временно допустимое повышение напряжения на ограничителе.

Максимальное значение напряжения при однофазном КЗ на шинах ОРУ :

Uнр=1,15*110/1,73=73,03 кВ; Uу=1,4*73,03=102,24 кА

Кратность напряжения:

Uу/Uнро=102,24/84=1,22

Время в течении которого выдерживается воздействия напряжения ОПН-У-110/84-2УХЛ1 по приложению Б .

t=1200 > 4 c.

4. Определение защитного уровня ограничителя при грозовых перенапряжениях.

В соответствии с максимальное значения отстающих перенапряжений при грозовом импульсе с амплитудой 10 кА для ограничителей сетей 110 кВ должно быть не более 295 кВ.

Для ОПН-У-110/84-2УХЛ1:

при грозовом импульсе 10 кА Uостг =269 кВ < 295 кВ.

5. Определение защитного уровня ограничителя при коммутационных перенапряжениях.

В соответствии с коммутационные перенапряжения:

Uки=1,35*1,0*1,41*200=381 кВ

Для ОПН-У-110/84-2УХЛ1:

Uостк=211 < 381/1,2=317,5

6. Выбор длины пути утечки внешней изоляции ограничителя.

Согласно требованиям ГОСТ 9920-89 для района со II степенью загрязненности внешней среды удельная длина пути утечки должна быть не менее 2,0 см/кВ или 2 см/кВ *126 кВ=250 см.

Для ОПН-У -110/84-2УХЛ1 минимальная длина пути утечки 280 см > 250 см.

Вывод:

Выбранный тип ОПН-У -110/84-2УХЛ1 соответствует требуемым параметрам, определенным в соответствии с условиями эксплуатации.

Литература:

  1. Методические указания по применению ограничителей в электрических сетях 110-750 кВ. «РАО ЕЭС России».
  2. ГОСТ 1516.3 // Электрооборудование переменного тока на напряжения от 3 до 500 кВ. Требования к электрической прочности изоляции.
  3. ГОСТ 9920-89 Электроустановки переменного тока на напряжения от 3 до 750 кВ. длина пути утечки внешней изоляции.
  4. Основы выбора нелинейных ограничителей перенапряжения. Тимофеев С.А. Красноярск 2003 г.

Технические характеристики

Помимо конструктивного исполнения не менее важным фактором при выборе необходимого ограничителя (импульсных) перенапряжений (ОПН) служат его следующие основные технические параметры.

  • Максимальное рабочее напряжение, которое действует на ОПН неограниченно долго, не нарушая его работоспособности.
  • Максимальное напряжение, действующее на ОПН в течение заданного производителем времени не вызывая в нем никаких повреждений.
  • При приложении к концам ОПН рабочего напряжения измеряется ток, проходящий через изоляцию. Этот параметр называется током утечки. Величина его в исправном состоянии ограничителя стремится к нулю.
  • Разрядный ток — его величина определяет принадлежность ограничителя перенапряжения в защите от различных факторов вызывающих скачок напряжения: грозовые, электромагнитные, коммутационные.
  • Способность выдерживать работу в аварийном режиме сохраняя целостность всех конструктивных элементов.

Классификация ограничителей (импульсных) перенапряжений определяется государственными стандартами. В нормативных документах обозначаются основные требования к устройствам защиты в зависимости от характера источника. Различаются следующие группы защиты от перенапряжения:

  • от замыканий на высокой стороне низковольтных сетей;
  • от воздействия грозовых разрядов и скачков напряжений, вызванных переключением промышленных электроустановок;
  • от возможных перенапряжений, вызванных электромагнитными факторами.

В зависимости от принадлежности к конкретному виду решаемого вопроса ограничители импульсных перенапряжений могут отличаться друг от друга такими параметрами.

  • Класс напряжения. Ограничители защищают цепи рабочее напряжение которых варьируется от меньше, чем 1 кВольт до значительно больших значений. Существуют, например, ОПН на классы напряжения 0.38 кВольт и 0.66 кВольт, ОПН на классы напряжения 3, 6, 10 кВольт и другие.
  • Материал изоляционной рубашки. Наибольшее распространение получили фарфор и полимеры.

Керамические ОПН обладают хорошей устойчивостью к солнечному свету, имеют достаточную механическую прочность, что расширяет возможности эксплуатации в разных условиях. Ограничивают применение лишь большие весовые характеристики и характер распространения осколков при разрыве с точки зрения безопасности.

Полимерные ОПН успешно конкурируют с фарфоровыми. При многократно меньших весовых характеристиках и практически безопасным в случае разрушения избыточным давлением, они нисколько не уступают по диэлектрическим свойствам. К недостаткам относится способность к покрытию поверхности пылью, что повышает ток утечки и вызывает пробой изоляции. В эксплуатации они больше подвержены влиянию солнечной радиации и колебаниям температур внешней среды, чем фарфоровые ограничители (импульсных) перенапряжений.

  • Класс защищенности. От герметичного изготовления корпуса ОПН зависит возможность его установки на открытом воздухе или внутри помещения, что собственно определяет этот показатель.
  • Одноколонковые ОПН. Состоят из одного модульного блока варисторов с различным набором дисков из защитного полупроводникового элемента, рассчитанных на все классы напряжений.
  • Многоколонковые ОПН. Состоят из нескольких модульных блоков. Отличаются большей надежностью, чем одноколонковые конструкции.

Как подключить ОИН-1 в щитке

У этого устройства есть ряд функциональных аналогов от всех популярных производителей электротехники, поэтому и схемы их подключения в принципе аналогичны. В официальной документации схема подключения не слишком очевидна, она представлена в двух вариантах и выглядит следующим образом:

Обратите внимание первый вариант – подключение параллельно защищаемой цепи, а второй – последовательно с разъединителем. То есть в результате срабатывания ограничителя импульсных напряжений разъединитель должен разорвать цепь питания, чтобы избежать возгорания изделия и протекания тока по электрической дуге. Но приведенная схема совсем не наглядно и не понятно изображена, и сразу возникает вопрос о том, как правильно установить аппарат

Поэтому ознакомьтесь с несколькими примерами подключения УЗИП в электросеть

Но приведенная схема совсем не наглядно и не понятно изображена, и сразу возникает вопрос о том, как правильно установить аппарат. Поэтому ознакомьтесь с несколькими примерами подключения УЗИП в электросеть.

На рисунке ниже изображена типовая схема из условий для подключения 3 фаз. Здесь более наглядно изображено подключение ограничителей напряжения до счётчика. В трёхфазной цепи с системой заземления TN-S или TN-C-S его подключают между фазами, нулём и землёй. Но подключение ОИН-1 после счетчика тоже допустимо как дополнительная ступень защиты.

Монтажная схема на примере подключения в двухпроводной электросети:

И напоследок рассмотрим схемы для четырёх разных схем электроснабжения (1 фаза, 3 фазы, объединённый и разъединённый защитные проводники), которые встречаются наиболее часто:

Установка УЗИП — ограничители импульсного перенапряжения, правильный монтаж и подключение

Ограничители импульсного перенапряжения — скачкообразное напряжение атмосферного происхождения является основной причиной выхода из строя электронного оборудования и простоев производства. Наиболее опасный тип перенапряжения вызван прямыми ударами молнии.

Фактически, молния создает пики тока, которые генерируют перенапряжения в сети электропередачи и передачи данных, последствия которых могут быть чрезвычайно нежелательными и опасными для систем, сооружений и людей. У разрядников для защиты от перенапряжений есть много применений, от защиты дома до коммунальной подстанции.

Они устанавливаются на автоматических выключателях внутри жилого дома, внутри вмонтированных трансформаторов, на полюсных трансформаторах, на столбовых стойках и подстанциях. В данной публикации мы расскажем как правильно подключать ограничители импульсного перенапряжения, и покажем схемы соединения. В частности здесь речь пойдет о конкретном устройстве ОИН-1.

Для чего нужен ОИН-1 и его функциональные возможности

Прибор ограничителя импульсных напряжений в первую очередь нужен для защиты электрической сети переменного тока 380/220v. Скачкообразные, импульсные напряжения, многократно превышающие штатные значения, могут возникать из-за грозовых разрядов.

Кроме этого, действующее сетевое напряжение может изменяться в следствия бросков тока в электросети. Возникают они как правило во время подсоединения к сети либо отключения каких либо мощных электрических устройств.

В схему прибора ОИН-1 включен мощный варистор, выполняющий функции разрядника, которые применялись в устройствах более старшего поколения.

Устройство защиты от импульсных перенапряжений в силовом щитке

В этом варианте прибор подключен к защищаемой электрической цепи по параллельной схеме.

В случае каких либо возникших аварийных ситуаций, когда штатное напряжение начинает периодически «прыгать» до критического уровня, тогда устройство защиты мгновенно сработает.

Принцип действия защиты заключается в следующем. Во время образования в силовой цепи внезапного подъема напряжения, например, от грозового разряда. При этом на варисторе снижается сопротивление, и как следствие возникает короткое замыкание, после чего срабатывает автомат и отключает электрическую цепь. Установленные в этом силовом тракте, после варистора, различные приборы не получат повреждений, благодаря тому, что вовремя сработали ограничители импульсного перенапряжения.

В процессе эксплуатации ОИН-1 он может получить повреждения, чтобы убедится в его исправности, нужно ориентироваться на показание встроенного индикатора. В случае, если индикатор отображается зеленым цветом, то прибор находится в рабочем состоянии, а если индикатор покраснел, тогда устройство защиты подлежит замене.

Область использования

Защитный ограничитель напряжения ОИН-1 очень востребован при монтаже электро сетей, его практически всегда устанавливают в распределительных щитках на входе в помещение. А подключается он в цепь непосредственно перед прибором учета электроэнергии, то есть и сам счетчик будет под защитой от перенапряжения.

Кроме этого, данный прибор используется для защиты от перенапряжений, начиная от жилого дома до коммунальной подстанции. Они устанавливаются на автоматических выключателях внутри жилого помещения, внутри вмонтированных трансформаторов, на полюсных трансформаторах, на столбовых стойках и подстанциях.

Технические параметры

Таблица основных характеристик ОИН-1:Значение
1Стандартное напряжение220 В
2Номинальный разрядный ток6
3Максимальный РТ13
4Остаточное напряжение2200
5Уровень защитыне ниже IР21
6Температурный режимот -50 до +55
7Параметры устройства (размеры)80 × 17,5 × 66,5
8Вес0,12 кг
9Срок службы3–3,5 года

Настройка и проверка

При установке ВЧ заградителей, необходимо настроить и проверить указанные элементы. На подготовительном этапе необходимо убедиться в комплектности проектной документации, проверить соответствие проекту смонтированного оборудования, протяженности линии электропередачи и характеристик обрабатываемой фазы.

Схема присоединения ВЧ заградителя в сеть

Последующие контрольные операции включают проверку:

  • правильности подключения конденсаторов связи, фильтрующих элементов, кабельных линий;
  • электрических параметров ВЧ заградителей, в соответствии с документацией наладчиков (если работы выполняла другая организация);
  • состояния элементов, установленных на параллельных линиях;
  • удержания частотных параметров на необходимом уровне.

Предусмотрен предварительный и итоговый контроль, результаты которого отражают в исполнительной документации.

Урок 1. Назначение и принцип действия ОПН

Ограничители перенапряжений нелинейные (ОПН)-электрические аппараты, предназначенные для защиты оборудования систем электроснабжения от коммутационных и грозовых перенапряжений. Основным элементом ОПН является нелинейный резистор – варистор ( varistor, от англ. Vari(able) (Resi)stor – переменное, изменяющееся сопротивление).

Основное отличие материала нелинейных резисторов ограничителей от материала резисторов вентильных разрядников состоит в резко нелинейной вольт-амперной характеристики (ВАХ) и повышенной пропускной способности. Применение в ОПН высоконелинейных резисторов позволило исключить из конструкции аппарата искровые промежутки, что устраняет целый ряд недостатков, присущих вентильным разрядникам.

Основной компонент материала резисторов ОПН – оксид (окись) цинка ZnO. Оксид цинка смешивают с оксидами других металлов – закисью и окисью кобальта, окисью висмута и др. Технология изготовления оксидно-цинковых резисторов весьма сложна и трудоёмка и близка к требованиям при производстве полупроводников – применение химически чистого исходного материала, выполнение требований по чистоте и т. д. Основные операции при изготовлении – перемешивание и измельчение компонентов, формовка ( прессование) и обжиг. Микроструктура варисторов включает в себя кристаллы оксида цинка (полупроводник n – типа) и междукристаллической прослойки ( полупроводник p – типа). Таким образом, варисторы на основе оксида цинка ZnO являются системой последовательно – параллельно включённых p – n переходов. Эти p – n переходы и определяют нелинейные свойства варисторов, то есть нелинейную зависимость величины тока, протекающего через варистор, от приложенного к нему напряжения.

В настоящее время варисторы для ограничителей изготовляются как цилиндрические диски диаметром 28 – 150 мм, высотой 5 – 60 мм (рис 1). На торцевой части дисков методом металлизации наносятся алюминиевые электроды толщиной 0.05-0.30 мм. Боковые поверхности диска покрывают глифталевой эмалью, что повышает пропускную способность при импульсах тока с крутым фронтом.

Рис. 1. Нелинейный резистор – варистор

Диаметр варистора ( точнее — площадь поперечного сечения ) определяет пропускную способность варистора по току, а его высота — параметры по напряжению.

При изготовлении ОПН то или иное количество варисторов соединяют последовательно в так называемую колонку. В зависимости от требуемых характеристик ОПН и его конструкции и имеющихся на предприятии варисторов ограничитель может состоять из одной колонки (состоящей даже из одного варистора) или из ряда колонок, соединённых между собой последовательно/ параллельно.

Для защиты электрооборудования от грозовых или коммутационных перенапряжений ОПН включается параллельно оборудованию (рис. 2 ).

Рис.2

Защитные свойства ОПН объясняются вольт–амперная характеристикой варистора.

Вольт – амперная характеристика конкретного варистора зависит от многих факторов, в том числе от технологии изготовления, рода напряжения — постоянного или переменного, частоты переменного напряжения, параметров импульсов тока, температуры и др.

Типовая вольт- амперная характеристика варистора с наибольшим длительно допустимым напряжением 0.4 кВ в линейном масштабе приведена на рис. 3.


Рис. 3. Вольт – амперная характеристика варистора

На вольт – амперной характеристике варистора можно выделить три характерных участка: 1) область малых токов; 2) средних токов и 3) больших токов. Область малых токов – это работа варистора под рабочим напряжением, не превышающим наибольшее допустимое рабочее напряжение. В данной области сопротивление варистора весьма значительно. В силу неидеальности варистора сопротивление хотя и велико, но не бесконечно. поэтому через варистор протекает ток, называемый током проводимости. Этот ток мал — десятые доли миллиамперметра.

При возникновении грозовых или коммутационных импульсов перенапряжений в сети варистор переходит в режим средних токов. На границе первой и второй областей происходит перегиб вольт – амперной характеристики, при этом сопротивление варистора резко уменьшается (до долей Ома). Через варистор кратковременно протекает импульс тока, который может достигать десятков тысяч ампер. Варистор поглощает энергию импульса перенапряжения, выделяя затем её в виде тепла, рассеивая в окружающее пространство. Импульс перенапряжения сети “ срезается” (рис. 4).

Рис. 4

В третьей области ( больших токов) сопротивление варистора снова резко увеличивается. Эта область для варистора является аварийной.

Защитные устройства

Можно выделить несколько разновидностей устройств защиты. Отличаются они выполнением разных функций и разной стоимостью.

Сетевой фильтр является самым простым и недорогим средством защиты бытовой техники с небольшой мощностью. Он превосходно справляется с бросками, достигающими 450 В.

Основным элементом защиты сетевика является варистор – полупроводник, способный менять сопротивление в зависимости от возникающего напряжения. Именно этот элемент фильтра возьмет на себя удар при серьезном скачке.

Кроме того, фильтр способен защитить технику от помех высокой частоты. Помимо указанных защитных узлов фильтр оснащен плавким предохранителем, который сработает при коротком замыкании.

В качестве защиты электросети на разных ее уровнях – от перехода с воздушной линии на кабельную до конкретных приборов внутри дома – используют модульные ограничители перенапряжения. Являясь по сути разрядником для защиты от перенапряжений, ограничитель в качестве главного рабочего органа имеет все тот же варистор.

Стабилизатор способен выровнять скачущее напряжение в соответствии с номинальным. Если установить рамки, к примеру, в диапазоне от 200 до 250 В, то качественное устройство будет выдавать необходимые 220 В до тех пор, пока напряжение не выйдет за пределы указанного диапазона. Прибор отключит подачу питания до тех пор, пока напряжение не вернется в заданные границы.

Для сельской местности монтаж стабилизатора иногда является единственным средством повышения напряжения до необходимых значений. Стабилизаторы бывают двух видов:

  • линейные – к ним можно подключить несколько бытовых приборов;
  • магистральные – монтируются на входе электрической сети в дом или квартиру.

Источники бесперебойного питания продолжают подачу напряжения к подключенным приборам даже после срабатывания защитной системы или отключения электроэнергии. Время работы будет зависеть от аккумулятора и мощности потребителей.

Зачастую к ним подключают компьютеры с целью избежать потери данных во время внезапного сбоя. Среди современных устройств зарекомендовали себя модели, способные через USB-порт контролировать редактор текстов (например, сохранить файл) в случае возникновения внештатной ситуации.

Устройства защиты от импульсных перенапряжений в отличие от вышеперечисленных средств превосходно справляются с высоким напряжением. На основе таких устройств можно организовать защиту всех внутренних линий электропередачи частного дома.

Импульсы, которые могут возникнуть из-за грозы, превосходят способности этого устройства. Поэтому сфера применения реле защиты от перенапряжения – электрическая сеть внутри дома.

Для защиты частного дома от скачков напряжения устанавливаются специальные устройства, выбор которых велик. Будет лучше, если работу выполнят профессионалы, поскольку в домашних условиях вряд ли позволят настроить разработанную схему подключения защиты от перенапряжения и тем более провести ее тест в режиме критической ситуации.

Следует также помнить, что все операции с щитком, проводкой и приборами нужно проводить строго при выключенном электропитании.

Автомат или предохранитель перед УЗИП

Обязательным условием установки УЗИП является наличие аппарата защиты перед ним – автомата или предохранителя.

Причем специалисты рекомендуют ставить именно предохранитель.

В любом автоматическом выключателе есть катушка, обладающая индуктивностью. А вы эту самую катушку, состоящую из множества витков, устанавливаете последовательно в цепь с УЗИП. Помните, что мы ранее говорили про максимальные расстояния проводников для подключения устройства?

Так вот, выставив перед УЗИП автомат, у вас получится ситуация, когда ток молнии, помимо самого ОПС, вынужден будет пройти через всю катушку, образуя на ней дополнительное напряжение. Иногда эта величина может доходить до 100кВ!

Поэтому и ставят перед УЗИП предохранители с плавкой вставкой, длина которой всего пару сантиметров.

Кстати, есть модели УЗИП, в которых плавкая вставка встроена в корпус устройства.

Только не путайте назначение всех этих предохранителей или автоматов. Они не нужны для защиты самого ОПС. Их обязанность – отсоединить после срабатывания поврежденный элемент цепи.

УЗИП выполнив свою главную задачу, остается фактически “закороченным”, и подать напряжение на все остальное оборудование с короткозамкнутым элементом внутри цепи вы не сможете.

При этом у данной защиты, когда она стоит непосредственно перед самим аппаратом, а не на главном вводе, есть один существенный недостаток. Дело в том, что большинство молний многокомпонентные и их разряд вызывает не один импульс, а несколько.

Причем импульсы эти достигают устройства одномоментно. Представьте себе такую картину – пришла первая волна максимальной величины и заставила не просто сработать УЗИП, но и вывела из работы сменный модуль (выпал красный индикатор) с аппаратом защиты до него.

И тут же за первым импульсом накатывает второй (всего через 60-80мс), а защиты то уже нет! Поэтому иногда лучше защиту в виде автоматов или предохранителей размещать на главном вводе. Она после первого срабатывания будет гасить всю сеть 220В.

УЗИП чаще всего выходят из строя (срабатывают без возможности восстановления параметров варистора) по двум причинам:

слишком большое напряжение или разряд, который превышает рабочий диапазон (неправильно выбрали или установили не там, где надо)

длительное перенапряжение (не кратковременный импульс)

Например, при обрыве нейтрали или при длительном однофазном КЗ.

Ограничители импульсных напряжений (ОИН) ОИН1, ОИН2

ОИН1, ОИН2

РМЕА 656111.011 ТУ Предназначены для защиты электрооборудования и бытовых приборов от грозовых и импульсных перенапряжений. ОИН1 — без индикатора рабочего состояния; ОИН2 — с индикатором рабочего состояния.

Нормативно-правовое обеспечение

  • Отвечают требованиям ТР ТС 004/2011 «О безопасности низковольтного оборудования», других стандартов и ПУЭ».
  • Отвечает требованиям к защите от перенапряжений по ГОСТ Р 50571.19

Функциональные возможности

ОИН1 — ограничитель импульсных напряжений моноблок с варистором; по заказу световой индикатор наличия напряжения сети. ОИН2 — ограничитель импульсных напряжений моноблок с варистором, световой индикатор рабочего состояния, световая индикация напряжения сети.

Конструктивные особенности

Ограничитель импульсных напряжений (ОИН) обеспечивает:

  • Максимальное длительное рабочее напряжение 275 В частотой 50 Гц
  • Рабочий потребляемый ток при напряжении 275 В не превышает 0,7 мА
  • Выполнен в виде унифицированного модуля шириной 17,5 мм для монтажа на рейке 35/7мм
  • Выдерживает воздействие импульсов комбинированной волны с напряжением разомкнутой цепи 10,0 кВ и с током короткозамкнутой цепи 5 кА
  • Обеспечивает защиту оборудования от импульсного перенапряжения категории II по ГОСТ Р 50571.19-2000 (уровень напряжения защиты 2,0 кВ)
  • Выдерживает без повреждений воздействие временного перенапряжения 380 В
  • Классификация по тепловой защите: ОИН1 и ОИН2 — без тепловой защиты.
  • Классификация по наличию индикатора состояния: ОИН1 — без индикатора; ОИН1С (по дополнительному заказу) — со световым индикатором наличия напряжения сети; ОИН2 — со световым индикатором рабочего состояния.
  • Классификация по ремонтопригодности: ОИН1 и ОИН2 — моноблочные (неремонтируемые в условиях эксплуатации).
  • Допускает присоединение проводников сечением от 4 до 16 мм
Наименование характеристикиЗначение параметров
Номинальное напряжение питающей сети, В220
Номинальный разрядный ток, кА5; 10; 20
Максимальный разрядный ток, кА12,5; 25; 50
Остаточное напряжение при номинальном токе не выше, В2000
Класс испытаний по ГОСТ Р 51992II
Степень защиты, обеспечиваемая оболочкамине ниже IP20
Температура окружающего воздуха, Сот -45 до 55
Габаритные разметы, мм80 x 17,5 x 65,5
Масса, не более, кг0,12
Гарантийный срок эксплуатации, лет3

www.energomera.ru

Конструкция ограничителя перенапряжения

Ограничители перенапряжения являются следующим этапом эволюции устройств, защищающих от импульсных бросков напряжения. Данный прибор не содержит воздушных промежутков. Основным элементом устройства является варистор. Если быть более точным, набор варисторов. Для получения необходимых рабочих характеристик варисторы соединяются между собой в последовательные или параллельно – последовательные блоки.

Основу варистора составляет оксид цинка. В процессе изготовления варистора добавляются также оксиды других металлов. СтабЭксперт.ру напоминает, что в результате, готовое изделие представляет собой набор p–n переходов, соединённых параллельно и последовательно. Наличие данных полупроводниковых переходов определяет нелинейные свойства варистора.

Ограничители перенапряжения имеют некоторые конструктивные и функциональные различия. Классификация ОПН осуществляется по следующим признакам:

  • материалу изоляции;
  • конструкции устройств;
  • рабочему напряжению;
  • месту монтажа.

В некоторых случаях оборудование может оказаться под влиянием завышенного, по сравнению с номинальным, напряжения (при грозе или коммутациях электрических цепей). В этом случае возрастает вероятность пробоя изоляции установки. Нелинейные ограничители перенапряжений предназначены для использования в качестве основных средств защиты электрооборудования станций и сетей среднего и высокого классов напряжения переменного тока промышленной частоты от коммутационных и грозовых перенапряжений.

Ограничители перенапряжения (ОПН) – это высоковольтные аппараты, широко применяемые в промышленности. Область их применения распространяется на сети среднего и высокого классов напряжения переменного тока промышленной частоты. ОПН используются для защиты от повышенного сетевого и атмосферного напряжения

ОПН широко используются для защиты:

  • двигателей
  • трансформаторов
  • подстанций подвижного состава
  • компенсаторов напряжения
  • различных электроустановок и электрических машин

Варисторы в основном состоят из окиси цинка в оболочке из глифталевой эмали для улучшения проводимости. В процессе изготовления в оксид цинка добавляют примеси других металлов образуя p-n переходы, которые обеспечивают нелинейность вольт-ампеной характеристики варистора.

В данных аппаратах колонки варисторов расположены в полимерном корпусе из высокомолекулярного каучука. К недостаткам ОПНп относят небольшую механическую прочность и влияние перепадов температур на сопротивление изоляции.

Преимущества полимерных ограничителей перенапряжения:

  1. Высокая взрывобезопасность
  2. Высокая герметичность
  3. Небольшой вес
  4. Простота монтажа
  5. Возможность работы в загрязненных условиях
  6. Хорошие разрядные характеристики

Фарфоровые ОПН состоят из колонки варисторов, прижатой к боковой поверхности стеклопластиковой трубы, внутри фарфоровой покрышки. Фарфоровые ОПН отлично переносят перепады температур и обладают прекрасными механическими харктеристиками. В последнее время фарфоровые ОПН стали заменять на полимерные из-за ряда недостатков.

Недостатки фарфоровых ограничителей перенапряжения:

  1. Высокая масса и габариты
  2. Взрывоопасность
  3. Низкая герметичность из-за низких эксплуатационных характеристик резиновых уплотнителей
  4. Худшие в сравнении с ОПНп тепловые характеристики

Разновидности УЗИП

Эти аппараты могут иметь один или два ввода. Включение как одновводных, как и двухвводных устройств всегда производится параллельно цепи, защиту которой они обеспечивают. В соответствии с типом нелинейного элемента УЗИП подразделяются на:

  • Коммутирующие.
  • Ограничивающие (ограничитель сетевого напряжения).
  • Комбинированные.

Коммутирующие защитные аппараты

Для коммутирующих устройств, находящихся в обычном рабочем режиме, характерно высокое сопротивление. Когда происходит резкое увеличение напряжения в электрической сети, сопротивление прибора мгновенно падает до минимального значения. Основой коммутирующих аппаратов защиты сети являются разрядники.

Ограничители сетевого перенапряжения (ОПН)

Ограничитель импульсных перенапряжений также характеризуется высоким сопротивлением, плавно снижающимся по ходу возрастания напряжения и повышения силы электротока. Постепенное снижение сопротивления – это отличительная черта ограничивающих УЗИП. Ограничитель сетевого перенапряжения (ОПН) имеет в своей конструкции варистор (так называется резистор, величина сопротивления которого находится в нелинейной зависимости от воздействующего на него напряжения). Когда параметр напряжения становится больше порогового значения, происходит резкое увеличение силы тока, проходящего через варистор. После сглаживания электрического импульса, вызванного коммутационной перегрузкой или ударом молнии, ограничитель сетевого напряжения (ОПН) возвращается в обычное состояние.

Комбинированные УЗИП

Устройства комбинированного типа сочетают в себе возможности коммутационных и ограничивающих аппаратов. Они могут как коммутировать разность потенциалов, так и ограничивать ее возрастание. При необходимости комбинированные приборы могут выполнять одновременно обе этих задачи.

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий