Расчет пропускной способности труб.
Для точных и профессиональных расчетов необходимо использовать следующие показатели:
- Материал, из которого изготовлены трубы и другие элементы системы;
- Длина трубопровода
- Количество точек водопотребления (для системы подачи воды)
Наиболее популярные способы расчета:
1. Формула. Достаточно сложная формула, которая понятна лишь профессионалам, учитывает сразу несколько значений
Основные параметры, которые принимаются во внимание – материал труб (шероховатость поверхности) и их уклон
2. Таблица. Это более простой способ, по которому каждый желающий может определить пропускную способность трубопровода. Примером может послужить инженерная таблица Ф. Шевелева, по которой можно узнать пропускную способность, исходя из материала трубы.
3. Компьютерная программа. Одну из таких программ легко можно найти и скачать в сети Интернет. Она разработана специально для того, чтоб определить пропускную способность для труб любого контура. Для того что узнать значение, необходимо ввести в программу исходные данные, такие как материал, длина труб, качество теплоносителя и т.д.
Следует сказать, что последний способ, хоть и является самым точным, не подходит для расчетов простых бытовых систем. Он достаточно сложен, и требует знания значений самых различных показателей. Для расчета простой системы в частном доме лучше воспользоваться таблицами.
Тепловой расчёт отопления: общий порядок
Классический тепловой расчёт отопительной системы являет собой сводный технический документ, который включает в себя обязательные поэтапные стандартные методы вычислений.
Но перед изучением этих подсчётов основных параметров нужно определиться с понятием самой системы отопления.
Система отопления характеризуется принудительной подачей и непроизвольным отводом тепла в помещении.
Основные задачи расчёта и проектирования системы отопления:
- наиболее достоверно определить тепловые потери;
- определить количество и условия использования теплоносителя;
- максимально точно подобрать элементы генерации, перемещения и отдачи тепла.
При постройке системы отопления необходимо первоначально произвести сбор разнообразных данных о помещении/здании, где будет использоваться система отопления. После выполнить расчёт тепловых параметров системы, проанализировать результаты арифметических операций.
На основании полученных данных подобирают компоненты системы отопления с последующей закупкой, установкой и вводом в эксплуатацию.
Отопление – это многокомпонентная система обеспечения утверждённого температурного режима в помещении/здании. Являет собой обособленную часть комплекса коммуникаций современного жилищного помещения
Примечательно, что указанная методика теплового расчёта позволяет достаточно точно вычислить большое количество величин, которые конкретно описывают будущую систему отопления.
В результате теплового расчёта в наличии будет следующая информация:
- число тепловых потерь, мощность котла;
- количество и тип тепловых радиаторов для каждой комнаты отдельно;
- гидравлические характеристики трубопровода;
- объём, скорость теплоносителя, мощность теплового насоса.
Тепловой расчёт – это не теоретические наброски, а вполне точные и обоснованные итоги, которые рекомендуется использовать на практике при подборе компонентов системы отопления.
Замечания по монтажу и запуску
Для долговременной работы оборудования и его высокой эффективности следует соблюдать некоторые правила:
- Монтаж насоса производят так, чтоб его вал находился горизонтально. Для оборудования с «мокрым» ротором такое требование является обязательным! Ориентация трубопроводов (вертикальный, горизонтальный или наклонный участок) значения не имеет.
- Клеммная коробка должна располагаться сверху. Это обеспечит безопасность даже в случае возможных протечек.
- Современные агрегаты позволяют установку и на подачу, и на обратку, но расположение на обратном участке снизит тепловые нагрузки и увеличит ресурс оборудования.
- При монтаже обязательно предусмотреть байпас для циркуляционного насоса. Это позволит при отсутствии электропитания использовать отопительную систему в режиме с естественной циркуляцией.
- В качестве рабочей выбирается средняя скорость оборудования. Запуск системы осуществляется на самой высокой скорости (в системах с автоматикой отключается блокировка).
- После запуска следует удалить скопившийся воздух через предусмотренные в конструкции специальные клапаны.
Гидравлический расчёт водоснабжения
Безусловно, “картина” расчета тепла на отопление не может быть полноценной без вычисления таких характеристик, как объём и скорость теплоносителя. В большинстве случаев теплоносителем выступает обычная вода в жидком или газообразном агрегатном состоянии.
Реальный объём теплоносителя рекомендуется рассчитывать через суммирование всех полостей в системе отопления. При использовании одноконтурного котла – это оптимальный вариант. При применении двухконтурных котлов в системе отопления необходимо учитывать расходы горячей воды для гигиенических и иных бытовых целей
Расчет объема воды, подогреваемой двухконтурным котлом для обеспечения жильцов горячей водой и нагрева теплоносителя, производится путем суммирования внутреннего объема отопительного контура и реальных потребностей пользователей в нагретой воде.
Объём горячей воды в отопительной системе рассчитывается по формуле:
W=k*P, где
- W – объём носителя тепла;
- P – мощность котла отопления;
- k – коэффициент мощности (количество литров на единицу мощности, равен 13.5, диапазон – 10-15 л).
В итоге конечная формула выглядит так:
W = 13.5*P
Скорость теплоносителя – заключительная динамическая оценка системы отопления, которая характеризует скорость циркуляции жидкости в системе.
Эта величина помогает оценить тип и диаметр трубопровода:
V=(0.86*P*μ)/∆T, где
- P – мощность котла;
- μ – КПД котла;
- ∆T – разница температур между подаваемой водой и водой обратном контуре.
Используя вышеизложенные способы гидравлического расчёта, удастся получить реальные параметры, которые являются “фундаментом” будущей системы отопления.
Варианты приблизительных расчетов
Выполнить точный расчет тепловой мощности системы отопления довольно сложно, его могут сделать только профессионалы, имеющие соответствующую квалификацию и специальные знания. По этой причине данные вычисления обычно поручают специалистам.
В тоже время существуют и более простые способы, позволяющие приблизительно оценить величину требуемой тепловой энергии и их можно сделать самостоятельно:
- Нередко применяют расчет мощности отопления по площади (детальнее: “Расчет отопления по площади – определяем мощность отопительных приборов”). Считается, что жилые дома возводятся по проектам, разработанным с учетом климата в определенном регионе, и что в проектных решениях заложено использование материалов, которые обеспечивают требуемый тепловой баланс. Поэтому при расчете принято умножать величину удельной мощности на площадь помещений. Например, для Московского региона данный параметр находится в пределе от 100 до 150 ватт на один «квадрат».
- Более точный результат будет получен, если учитывать объем помещения и температуру. Алгоритм вычисления включает высоту потолка, уровень комфорта в отапливаемом помещении и особенности дома.
Используемая формула выглядит следующим образом: Q = VхΔTхK/860, где: V – объем помещения; ΔT – разница между температурой внутри дома и снаружи на улице; К – коэффициент теплопотерь.
Поправочный коэффициент позволяет учесть конструктивные особенности объекта недвижимости. Например, когда определяется тепловая мощность системы отопления здания, для строений с обычной кровлей из двойной кирпичной кладки К находится в диапазоне 1,0–1,9.
Метод укрупненных показателей. Во многом похож на предыдущий вариант, но его применяют для вычисления тепловой нагрузки для систем отопления многоквартирных зданий или других больших объектов.
Все три вышеперечисленные способы, позволяющие сделать расчет необходимой теплоотдачи, дают приблизительный результат, который может отличаться от реальных данных или в меньшую, или в большую сторону. Понятно, что монтаж маломощной отопительной системы не обеспечит требуемую степень обогрева.
Расчет тепловой нагрузки (усложненная формула)
Схема теплопотерь помещений
Чтобы вычислить окончательный расход тепла на отопление, необходимо учесть все коэффициенты по следующей формуле:
КТ = 100хSхК1хК2хК3хК4хК5хК6хК7, где:
S – площадь комнаты;
К – различные коэффициенты:
K1 – нагрузки для окон (в зависимости от количества стеклопакетов);
K2 – тепловой изоляции наружных стен здания;
K3 –нагрузки для соотношения площади окон к площади пола;
K4 – температурного режима наружного воздуха;
K5 – учитывающий количество наружных стен комнаты;
K6 – нагрузки, исходя из верхнего помещения над рассчитываемой комнатой;
K7 – учитывающий высоту помещения.
Как пример, можно рассмотреть ту же комнату здания в Самарской области, утепленную снаружи пенопластом, имеющую 1 окно с двойным стеклопакетом, над которой расположено отапливаемое помещение. Формула тепловой нагрузки будет выглядеть следующим образом:
KT = 100*20*1,27*1*0,8*1,5*1,2*0,8*1= 2926 Вт.
Расчет отопления ориентирован именно на эту цифру.
Расход тепла на отопление: формула и корректировки
Пример методики расчёта отопления по объему помещения
Исходя из выше сделанных расчетов, для отопления комнаты необходимо 2926 Вт. Учитывая тепловые потери, потребности составляют: 2926 + 1000 = 3926 Вт (KT2). Для расчета количества секций используют следующую формулу:
K = KT2/R, где KT2 – окончательное значение тепловой нагрузки, R – теплоотдача (мощность) одной секции. Итоговая цифра:
K = 3926/180 = 21,8 (округленная 22)
Итак, чтобы обеспечить оптимальный расход тепла на отопление, необходимо поставить радиаторы, имеющие в сумме 22 секции. Нужно учитывать, что самая низкая температура – 30 градусов мороза по времени составляет максимум 2-3 недели, поэтому можно смело уменьшить число до 17 секций (- 25%).
Если хозяев жилья не устраивает такой показатель количества радиаторов, то следует изначально брать во внимание батареи, имеющие большую мощность теплоснабжения. Либо утеплять стены здания и внутри, и снаружи современными материалами
Кроме того, нужно правильно оценить потребности жилья в тепле, исходя из второстепенных параметров.
Существует еще несколько параметров, влияющих на дополнительный расход энергии впустую, что влечет за собой увеличение тепловой потери:
- 1 Особенности наружных стен. Энергии обогрева должно хватить не только для отопления помещения, но и для компенсации потерь тепла. Стена, контактирующая с окружающей средой, со временем от перепадов температуры наружного воздуха начинает пропускать внутрь влагу. Особенно следует хорошо утеплить и провести качественную гидроизоляцию для северных направлений. Также рекомендуется изолировать поверхность домов, находящихся во влажных регионах. Высокий годовой уровень осадков неизбежно приведет к повышению теплопотерь.
- 2 Место установки радиаторов. Если батарея монтирована под окном, то происходит утечка энергии обогрева через его конструкцию. Уменьшить потери тепла поможет установка качественных блоков. Также нужно рассчитывать мощность прибора, установленного в подоконной нише – она должна быть выше.
- 3 Условность годовой потребности тепла для зданий в разных часовых поясах. Как правило, по СНИПам рассчитывается усредненная температура (усредненный годовой показатель) для зданий. Однако потребности в тепле бывают существенно ниже, если, например, на холодную погоду и низким показателям наружного воздуха приходится в общей сложности 1 месяц в году.
Совет! Чтобы максимально снизить потребности в тепле зимой, рекомендуется установить дополнительные источники обогрева воздуха внутри помещения: кондиционеры, передвижные обогреватели и пр.
(Пока оценок нет)
Методика расчета
Потери в трансформаторах можно рассчитать по определенной методике. Для этого потребуется получить ряд исходных характеристик работы трансформатора. Представленная далее методика применяется для двухобмоточных разновидностей. Для измерений потребуется получить следующие данные:
- Номинальный показатель мощности системы (НМ).
- Потери, определяемые при холостом ходе (ХХ) и номинальной нагрузке.
- Потери короткого замыкания (ПКЗ).
- Количество потребленной энергии за определенное количество времени (ПЭ).
- Полное количество отработанных часов за месяц (квартал) (ОЧ).
- Число отработанных часов при номинальном уровне нагрузки (НЧ).
Получив эти данные, измеряют коэффициент мощности (угол cos φ). Если же в системе отсутствует счетчик реактивной мощности, в расчет берется ее компенсация tg φ. Для этого происходит измерение тангенса угла диэлектрических потерь. Это значение переводят в коэффициент мощности.
Расчет насоса для системы отопления
Подбор циркуляционного насоса для отопления
Тип насоса должен быть обязательно циркуляционным, для отопления и выдерживать большие температуры (в пределах до 110 °С).
Основные параметры подбора циркуляционного насоса:
2. Максимальный напор, м.
Для более точного расчета, необходимо увидеть график напорно-расходной характеристики
Характеристика насоса – это напорно-расходная характеристика насоса. Показывает, как изменяется расход при воздействии определенного сопротивления потерь напора в системе отопления (целого контурного кольца). Чем быстрее движется теплоноситель в трубе, тем больше расход. Чем больше расход, тем больше сопротивления (потерь напора).
Поэтому, в паспорте указывают максимально возможный расход при минимально возможном сопротивлении системы отопления (одного контурного кольца). Любая система отопления оказывает сопротивление движению теплоносителя. И чем она больше, тем меньше окажется расход в целом на систему отопления.
Точка пересечения показывает реальный расход и потерю напора (в метрах).
Характеристика системы – это напорно-расходная характеристика системы отопления в целом для одного контурного кольца. Чем больше расход, тем больше сопротивление движению. Поэтому, если установлено для системы отопления качать: 2 м 3 /час, то насос нужно подобрать таким образом, чтобы удовлетворить данный расход. Грубо говоря, насос должен справиться с необходимым расходом. Если сопротивление отопления высокое, то насос должен обладать большим напором.
Для того, чтобы определить максимальный расход насоса, необходимо знать расход вашей системы отопления.
Для того чтобы определить максимальный напор насоса необходимо знать, какое сопротивление будет испытывать система отопления при заданном расходе.
Расход системы отопления.
Расход строго зависит от необходимого переноса тепла по трубам. Чтобы найти расход необходимо знать следующее:
2. Разница температур (Т1 и Т2) подающего и обратного трубопровода в системе отопления.
3. Средняя температура теплоносителя в системе отопления. (Чем ниже температура, тем меньше теряется тепло в системе отопления)
Предположим, что отапливаемое помещение потребляет 9 кВт тепла. И система отопления рассчитана, так чтобы отдать 9 кВт тепла.
Это означает, что теплоноситель, проходя через всю систему отопления (три радиатора) теряет свою температуру (Смотри изображение). То есть температура в точке Т1 (на подаче) всегда больше Т2 (на обратке).
Чем больше расход теплоносителя через систему отопления, тем ниже разница температур между подающей и обратной трубой.
Чем выше разница температур при неизменном расходе, тем больше тепла теряется в системе отопления.
С – теплоемкость теплоносителя воды, С=1163 Вт/(м 3 •°С) или С=1,163 Вт/(литр•°С)
Q – расход, (м 3 /час) или (литр/час)
t1 – Температура подающего теплоносителя
t2 – Температура остывшего теплоносителя
Поскольку потери помещения маленькие, я предлагаю посчитать через литры. Для больших потерь используйте м 3
Необходимо определиться какая разница температур будет между подающим и остывшим теплоносителем. Вы можете выбрать абсолютно любую температуру, от 5 до 20 °С. От выбора температур будет зависеть расход, а расход создаст некоторые скорости теплоносителя. А, как известно движение теплоносителя создает сопротивление. Чем больше расход, тем больше сопротивление.
Для дальнейшего расчета я выбираю 10 °С. То есть на подаче 60 °С на обратке 50 °С.
t1 – Температура подающего теплоносителя: 60 °С
t2 – Температура остывшего теплоносителя: 50 °С.
W=9 кВт = 9000 Вт
Из вышеуказанной формулы получаю:
Ответ: Мы получили необходимый минимальный расход 774 л/ч
Сопротивление системы отопления.
Сопротивление системы отопления будем измерять в метрах, потому, что это очень удобно.
Предположим, что мы уже рассчитали это сопротивление и оно равно 1,4 метров при расходе в 774 л/ч
Очень, важно понять, что чем выше расход, тем больше сопротивление. Чем ниже расход, тем меньше сопротивление
Поэтому при данном расходе в 774 л/ч мы получаем сопротивление 1,4 метров.
И так мы получили данные, это:
Расход = 774 л/ч = 0,774 м 3 /ч
Сопротивление = 1,4 метров
Далее по этим данным подбирается насос.
Рассмотрим циркуляционный насос с расходом до 3 м 3 /час (25/6) 25 мм-диаметр резьбы, 6 м – напор.
Желательно когда подбираете насос, посмотреть реальный график напорно-расходной характеристики. Если его не имеется, то рекомендую просто провести прямую линию на графике с указанными параметрами
Тут расстояние между точками A и B – минимальны, и поэтому данный насос подходит.
Его параметры будут равны:
Максимальный расход 2 м 3 /час
Максимальный напор 2 метра
Эффективность нагревателей
Мощность — это физическое определение скорости передачи или потребления энергии. Она равна отношению количества работы за определённый промежуток времени к этому периоду. Нагревательные устройства характеризуются по расходу электричества в киловаттах.
Для сопоставления энергий различного рода введена формула тепловой мощности: N = Q / Δ t, где:
- Q — количество теплоты в джоулях;
- Δ t — интервал времени выделения энергии в секундах;
- размерность полученной величины Дж / с = Вт.
В этом видео вы узнаете, как рассчитать количество теплоты:
Для оценки эффективности работы нагревателей используют коэффициент, указывающий на количество израсходованного по назначению тепла — КПД. Определяется показатель делением полезной энергии на затраченную, является безразмерной единицей и выражается в процентах. По отношению к разным частям, составляющим окружающую среду, КПД нагревателя имеет неравные значения. Если оценивать чайник как нагреватель воды, его эффективность составит 90%, а при использовании его в качестве отопителя комнаты коэффициент возрастает до 99%.
Объяснение этому простое: из-за теплообмена с окружением часть температуры рассеивается и теряется. Количество утраченной энергии зависит от проводимости материалов и других факторов. Можно рассчитать теоретически мощность тепловых потерь по формуле P = λ × S Δ T / h. Здесь λ – коэффициент теплопроводности, Вт/(м × К); S — площадь участка теплообмена, м²; Δ T — перепад температур на контролируемой поверхности, град. С; h — толщина изолирующего слоя, м.
Расчет радиаторов отопления по площади
Самый простой способ. Посчитать требуемое на обогрев количество тепла, исходя из площади помещения, в котором будут устанавливаться радиаторы. Площадь каждой комнаты вы знаете, а потребность тепла можно определить по строительным нормам СНиПа:
- для средней климатической полосы на отопление 1м 2 жилого помещения требуется 60-100Вт;
- для областей выше 60 о требуется 150-200Вт.
Исходя из этих норм, можно посчитать, сколько тепла потребует ваша комната. Если квартира/дом находятся в средней климатической полосе, для отопления площади 16м 2. потребуется 1600Вт тепла (16*100=1600). Так как нормы средние, а погода постоянством не балует, считаем, что требуется 100Вт. Хотя, если вы проживаете на юге средней климатической полосы и зимы у вас мягкие, считайте по 60Вт.
Расчет радиаторов отопления можно сделать по нормам СНиП
Запас по мощности в отоплении нужен, но не очень большой: с увеличением количества требуемой мощности возрастает количество радиаторов. А чем больше радиаторов, тем больше теплоносителя в системе. Если для тех, кто подключен к центральному отоплению это некритично, то для тех у кого стоит или планируется индивидуальное отопление, большой объем системы означает большие (лишние) затраты на обогрев теплоносителя и большую инерционность системы (менее точно поддерживается заданная температура). И возникает закономерный вопрос: «Зачем платить больше?»
Рассчитав потребность помещения в тепле, можем узнать, сколько потребуется секций. Каждый из отопительных приборов выделять может определенное количество тепла, которое указывается в паспорте. Берут найденную потребность в тепле и делят на мощность радиатора. Результат — необходимое количество секций, для восполнения потерь.
Посчитаем количество радиаторов для того же помещения. Мы определили, что требуется выделить 1600Вт. Пусть мощность одной секции 170Вт. Получается 1600/170=9,411шт. Округлять можно в большую или меньшую сторону на ваше усмотрение. В меньшую можно округлить, например, в кухне — там хватает дополнительных источников тепла, а в большую — лучше в комнате с балконом, большим окном или в угловой комнате.
Система проста, но недостатки очевидны: высота потолков может быть разной, материал стен, окна, утепление и еще целый ряд факторов не учитывается. Так что расчет количества секций радиаторов отопления по СНиП — ориентировочный. Для точного результата нужно внести корректировки.
Пример выполнения расчета
Поправочные коэффициенты в данном случае будут равны:
- К1 (двухкамерный стеклопакет) = 1,0;
- К2 (стены из бруса) = 1,25;
- К3 (площадь остекления) = 1,1;
- К4 (при -25 °C -1,1, а при 30°C) = 1,16;
- К5 (три наружные стены) = 1,22;
- К6 (сверху теплый чердак) = 0,91;
- К7 (высота помещения) = 1,0.
В результате полная тепловая нагрузка будет равна: В том случае, когда бы использовался упрощенный метод вычислений, основанный на расчете мощности отопления согласно площади, то результат был бы совсем иной: Пример расчета тепловой мощности системы отопления на видео:
Выводы и полезное видео по теме
Куда уходит тепло из дома – ответы предоставляет наглядный видеоролик:
Подробное видео о принципах подбора мощностных характеристик котла отопления смотрите ниже:
Выработка тепла ежегодно дорожает – растут цены на топливо. А тепла постоянно не хватает. Относиться безразлично к энергозатратам коттеджа нельзя – это совершенно невыгодно.
С одной стороны каждый новый сезон отопления обходится домовладельцу дороже и дороже. С другой стороны утепление стен, фундамента и кровли загородного стоит хороших денег. Однако чем меньше тепла уйдет из здания, тем дешевле будет его отапливать.
Сохранение тепла в помещениях дома – основная задача отопительной системы в зимние месяцы. Выбор мощности отопительного котла зависит от состояния дома и от качества утепления его ограждающих конструкций. Принцип «киловатт на 10 квадратов площади» работает в коттедже среднего состояния фасадов, кровли и фундамента.
Вы самостоятельно рассчитывали систему отопления для своего дома? Или заметили несоответствие вычислений, приведенных в статье? Поделитесь своим практическим опытом или объемом теоретических знаний, оставив комментарий в блоке под этой статьей.