Феррорезонансный стабилизатор напряжения: достоинства и недостатки

Феррорезонансные стабилизаторы

Такие устройства не оснащаются вольтметром, поэтому будет трудно понять, какая величина напряжения сети получается на выходе. Самому не получится отрегулировать напряжение. Если для вас это не критично, то такой вид стабилизатора хорошо подходит для вас. Феррорезонансные устройства могут частично искажать величину показаний, погрешность может доходить до 12%.

Если вы долгое время применяете такой прибор, то нужно знать, что он способен испускать магнитное поле, влияющее на функционирование бытовых приборов. Эти стабилизаторы настраивают в заводских условиях, поэтому после его монтажа нужно просто подключить в работу.

Это интересно: Электромеханический стабилизатор напряжения

Стабилизатор напряжения электромеханического типа

Что собой представляет данный прибор? По сути, это трансформатор (вольтодобавочный), который самостоятельно регулирует напряжение на подающем шлейфе. То есть, нет необходимости что-то подкручивать, если появилась необходимость добавить несколько вольт, как это делается с релейными аналогами.

В настоящее время область применения электромеханических стабилизаторов достаточно обширна. Это не только помещения бытового назначения и офисы, востребованы эти приборы и в тех местах, где используется высокоточное электронное оборудование. К примеру, в медицинских учреждениях.

Классификация стабилизаторов

Основное разделение стабилизаторов напряжения электромеханических производится по самому напряжению. То есть, они бывают однофазными (220 вольт) и трехфазными (380 вольт). Понятно, что первые чаще всего используются в частном секторе и в офисных помещениях, вторые в больших учреждениях и на производстве. Хотя сегодня, когда у населения появилась возможность строить большие собственные дома, в которых размещается огромное количество бытовой техники, трехфазные стабилизаторы напряжения стали устанавливаться и в них.

По своему исполнению приборы представлены настенными моделями, напольными, настольными, могут крепиться как в горизонтальном положении, так и в вертикальном. То есть, производители учли все варианты удобного расположения, зависящего от места установки аппарата. Необходимо отметить, что эти стабилизаторы напряжения обладают очень точной установкой напряжения, работают без посторонних помех, прекрасно себя показали при краткосрочных высоких перегрузках, при этом обладают достаточно широким интервалом стабилизации самого напряжения.

И третья позиция разделения – это мощность прибора. В настоящее время производители предлагают очень широкий модельный ряд в этом плане. Здесь и простые маломощные стабилизаторы напряжения 500 кВА, и высокомощные агрегаты до 20000 кВА. Необходимо отметить, что чисто конструктивно две позиции (220 и 380 вольт) отличаются между собой тем, что первый вариант – это один трансформатор и один щеточный блок, в конструкции второго могут присутствовать два или три трансформатора.

Достоинства и недостатки

Электромеханические стабилизаторы напряжения обладают широким рядом преимуществ перед другими аналогами:

  • широчайший диапазон входного напряжения;
  • высокая точность выходного показателя напряжения, искажения практически отсутствуют;
  • безопасная работа при высоком входном напряжении краткосрочного действия в независимости от того это будет напряжение 220 вольт или 380;
  • низкая чувствительность (практически полное ее отсутствие) к рабочей частоте дает возможность использовать трехфазные стабилизаторы напряжения на промышленных объектах;
  • бесшумная работа даже при самых высоких скачках напряжения в подающей сети.

Не обошлось и без недостатков:

  • к сожалению, это не электронный прибор, поэтому в конструкции электромеханического стабилизатора присутствуют подвижные элементы, которые раз в 5-6 лет придется менять на новые;
  • раз в десять лет производители рекомендуют менять сервопривод щеточного блока;
  • если напряжение в подающей сети падает ниже 180 вольт, то практически все производители не гарантируют его повышение на выходе до заявленного паспортного значения;
  • однофазные аналоги не приспособлены работать при низких температурах, поэтому лучше всего устанавливать их внутри отапливаемых помещений;
  • не очень высокая скорость стабилизации, конечно, если сравнивать с другими моделями;
  • есть ли необходимость данный момент относить к недостаткам, каждый решает сам, но работа сервопривода электромеханического стабилизатора сопровождается щелчком, который действует доли секунд.

Классификация

Антирезонансные агрегаты классифицируют в основном по характеристикам напряжения, на которое они рассчитаны. Различают следующие разновидности указанного оборудования:

  • с напряжением в 110 кВ – предусматривают глухозаземленную нейтраль. При этом исключается воздействие феррорезонансных процессов для нулевого канала. Но если отдельный участок сети потеряет нейтраль, негативные факторы могут повлиять на работу агрегата, с возрастанием напряжения до 2,5 раз. Чтобы исключить выход оборудования из строя, необходимо увеличить активное сопротивление на активном входе;
  • с напряжением в 220, 330 и 500 кВ – предусматривают использование конденсаторов, компенсирующих негативное влияние перепадов фазного напряжения.

Отдельно следует сказать о трансформаторах типа НАМИ. Данная аббревиатура расшифровывается так:

  • Н – указывает, что агрегат изменяет напряжение;
  • А – антирезонансного типа;
  • М – с масляным охлаждением;
  • И – изоляционно-контрольный.

Производятся следующие устройства, отличающиеся индексом, следующим через дефис после указанной аббревиатуры:

  • 10 – базовая модель;
  • 10-95 – рассчитанный на включение в электрическую сеть с величиной частоты в 50 Гц. Напряжение катушки на входе составляет 10 или 6 кВ, на выходе – 0,1. Для исполнения заземления используется конструкционная сталь, катушки с сердечниками помещаются в масляную ёмкость;
  • 10-95 УХЛ-2 – в дополнение к основной функции, предусматривающей передачу сигнала к управляющим блокам, в качестве измерительных или защитных систем, могут выполнять роль защитных элементов для электрических приборов при критичном росте напряжения.

Перечисленные устройства выполняются с различными габаритными размерами и могут предусматривать некоторые конструктивные различия, указанные в паспортной документации от изготовителя.

Электромеханический стабилизатор

Основу стабилизатора этого типа составляет автотрансформатор, обмотка которого не имеет отводов. Он имеет тороидальную конструкцию. В нижней части трансформатора установлен низковольтный серводвигатель. На его роторе закреплён ползунок с графитовой щёткой. По аналогии с релейным стабилизатором, в этом устройстве так же имеется плата контроля и управления.

Электромеханический стабилизатор напряжения работает следующим образом. Изменение напряжения сети измеряется схемой сравнения, которая фиксирует отклонение от номинала в большую или меньшую сторону. Плата управления вырабатывает сигнал на серводвигатель, который перемещает свой ротор на определённый угол.

В результате, контакт ползунка увеличивает или уменьшает напряжение на выходе. Как только напряжение на входе приходит в норму, серводвигатель снова срабатывает, поэтому если сеть нестабильна, перемещение ползунка с контактом происходит постоянно.

Преимущества и недостатки

Электромеханические стабилизаторы могут быть использованы в быту, на производственных объектах, в некоторых медицинских и общеобразовательных учреждениях. Именно электромеханические системы работают в промышленных стабилизаторах большой мощности, которая может достигать 1,5-2,0 МВт. Приборы этого типа имеют свои достоинства и недостатки.

К достоинствам относятся:

  • Высокая точность регулирования;
  • Чистый синусоидальный сигнал;
  • Способность к перегрузкам;
  • Возможность работы в условиях низкого напряжения.

Среди недостатков у стабилизаторов этого типа есть весьма серьёзные:

  • Медленная скорость коррекции;
  • Необходимость в техническом обслуживании;
  • Пожароопасность.

Низкое быстродействие может привести к выходу из строя какой-либо электронной аппаратуры, когда стабилизатор не успеет отработать резкий бросок напряжения. Графитовые щётки могут стираться, что требует их замены, а пыль, попадающая под контакт, может привести к возгоранию самого стабилизатора.

Подготовка оборудования для проведения опытов с нелинейными ферромагнетиками

Надо отметить, что умение проектировать и рассчитывать устройства, основанные на использовании явления феррорезонанса, можно считать высшим пилотажем. Причиной тому являются малоизвестные нелинейные процессы, происходящие в катушках с ферромагнитным сердечником, которые неподготовленный человек не сможет не то, чтобы спрогнозировать, но даже предположить саму возможность существования нелинейности.

Для съёмки опытов с нелинейными процессами и явлением феррорезонанса специально для этого я решил собрать трансформатор. Он будет использован для целой серии опытов с нелинейными процессами.

Особое внимание при подготовке трансформатора пришлось уделить электрической изоляции стальных пластин друг от друга, чтобы максимально снизить энергию, затрачиваемую не только на перемагничивание сердечника трансформатора, но и на достижение порога его насыщения

Сечение стержней трансформатора 50х52 мм. Высота стержней (считая от перегородки) 145 мм.

Смотрим короткий видеофрагмент №1:

Левую (на фото) обмотку для проведения некоторых опытов я специально выполнил литцендратом. Фото этой обмотки приведено на иллюстрации ниже. Литцендрат выполнен из 7 перекрученных между собой медных проводов в лаковой изоляции. Диаметр каждого равен 0,7 мм, а площадь сечения литцендарата – около 16 мм2. Общая длина литцендарата получилась около 50 метров, которых хватило на 160 витков обмотки.

Правая (на фото) обмотка трансформатора осталась заводского исполнения.

Трансформатор собран таким образом, чтобы можно было его легко разбирать, снимать верхний пакет пластин, быстро снимать и добавлять прокладки между двумя пакетами пластин.

Вес в сборе трансформатора более 15 килограммов.

Феррорезонансные стабилизаторы напряжения — принцип работы

Стабилизатор, у которого на зажимах нелинейного дросселя получают стабилизированное напряжение, является простейшим ферромагнитным стабилизатором. Его основной недостаток — низкий коэффициент мощности. Кроме того, при больших токах в цепи габариты линейного дросселя очень большие. Для уменьшения веса и габаритов ферромагнитные стабилизаторы напряжения изготовляют с объединенной магнитной системой, а для повышения коэффициента мощности включают конденсатор по схеме резонанса токов. Такой стабилизатор называется феррорезонансным .

Феррорезонансные стабилизаторы напряжения конструктивно похожи на обычные трансформаторы (рис. 1, а). Первичная обмотка w1 на которую подается входное напряжение Uвх, располагается на участке 2 магнитопровода, имеющем большое поперечное сечение для того, чтобы эта часть магнитопровода находилась в ненасыщенном состоянии. Напряжение Uвх создает магнитный поток Ф2.

Рис. 1. Схемы феррорезонансного стабилизатора напряжения: а — принципиальная; б — замещения

Вторичная обмотка w2, на зажимах которой индуцируется выходное напряжение Uвых и к которой присоединяется нагрузка, расположена на участке 3 магнитопровода, имеющем меньшее сечение и находящемся в насыщенном состоянии. Поэтому при отклонениях напряжения Uвх и магнитного потока Ф2 значение магнитного потока Ф3 на участке 3 почти не изменяется, не изменяется э. д. с. вторичной обмотки и Uвых. При увеличении потока Ф2 та его часть, которая не может проходить по участку 3, замыкается через магнитный шунт 1 (Ф1).

Магнитный поток Ф2 при синусоидальном напряжении Uвх синусоидален. Когда мгновенное значение потока Ф2 приближается к амплитудному, участок 3 переходит в режим насыщения, поток Ф3 перестает увеличиваться и появляется поток Ф1. Таким образом, поток через магнитный шунт 1 замыкается только в те моменты времени, когда поток Ф2 по значению близок к амплитудному. Это делает поток Ф3 несинусоидальным, напряжение Uвых становится также несинусоидальным, в нем ярко выражена третья гармоническая составляющая.

В схеме замещения (рис. 1, б) параллельно включенные индуктивность L2 нелинейного элемента (вторичной обмотки) и емкость С образуют феррорезонансный контур, имеющий характеристики, представленные на рис 2. Как видно из схемы замещения, токи в ветвях пропорциональны напряжению Uвх. Кривые 3 (ветвь L2) и 1 (ветвь С) расположены в разных квадрантах, так как токи в индуктивности и емкости противоположны по фазе. Характеристику 2 резонансного контура строят, алгебраически суммируя токи в L2 и С при одних и тех же значениях напряжения Uвых.

Как видно из характеристики резонансного контура, применение конденсатора дает возможность получать стабильное напряжение при малых токах намагничивания, т. е. при меньших напряжениях Uвх.

Кроме того, при наличии конденсатора стабилизатор работает с высоким коэффициентом мощности. Что касается коэффициента стабилизации, то он зависит от угла наклона горизонтальной части кривой 2 к оси абсцисс. Так как этот участок имеет значительный угол наклона, то получить большой коэффициент стабилизации без дополнительных устройств невозможно.

Рис. 2. Характеристики нелинейного элемента феррорезонансного стабилизатора напряжения

Таким дополнительным устройством является компенсирующая обмотка wк (рис. 3), располагаемая вместе с первичной обмоткой на ненасыщенном участке 1 магнитопровода. С увеличением Uвх и Ф увеличивается э. д. с. компенсирующей обмотки. Ее включают последовательно с вторичной обмоткой, но так, чтобы э. д. с. компенсирующей обмотки была противоположна по фазе э. д. с. вторичной обмотки. Если Uвх увеличивается, то незначительно увеличивается э. д. с. вторичной обмотки. Напряжение Uвых, которое определяется разностью э. д. с. вторичной и компенсирующей обмоток, поддерживается постоянным за счет возрастания э. д. с. компенсирующей обмотки.

Особенности конструкции, принцип действия

РПН, не смотря на характер действия и выполняемую функцию, не следует относить к реле. Но данное устройство отличается простым принципом действия.

Система переключающего устройства

На каждой из фаз трансформатора устанавливаются по два подвижных контакта. Один из них прижат к витку катушки, обеспечивающему заданную величину напряжения. При переводе, второй контакт прижимается к витку, изменяющему указанное значение. Включение может производиться вручную или с использованием привода.

Конструкция устройства отличается, в зависимости от его типа. Но основной принцип предполагает изменение количества работающих витков на первичной катушке трансформатора.

Феррорезонанс в электрических цепях

В 1907 году французский инженер Джозеф Бетено опубликовал статью «О резонансе в трансформаторах» (Sur le Transformateur ? Rйsonance), где он впервые обратил внимание на такое явление как феррорезонанс. Непосредственно же термин «феррорезонанс», спустя 13 лет, ввел тоже француз, инженер и преподаватель электротехники, Пауль Бушеро в своей статье 1920 года, которая назвалась «Существование двух режимов феррорезонанса» (Йxistence de Deux Rйgimes en Ferrorйsonance)

Бушеро проанализировал явление феррорезонанса, и показал, что существует две стабильные резонансные частоты в цепи, состоящей из конденсатора, резистора и нелинейной индуктивности.

Таким образом, явление феррорезонанса связано с нелинейностью индуктивного элемента в цепи контура . Нелинейный резонанс, могущий возникнуть в электрической цепи называется феррорезонансом, и для его возникновения необходимо, чтобы контур обязательно содержал нелинейную индуктивность и обычную емкость.

Очевидно, линейным цепям феррорезонанс абсолютно не свойственен. В случае, если индуктивность в контуре линейна, а емкость нелинейна, то возможно явление аналогичное феррорезонансу. Основной особенностью феррорезонанса является то, что для одной цепи характерны различные режимы этого нелинейного резонанса, в зависимости от вида возмущения.

От чего индуктивность может быть нелинейна? Главным образом из-за того, что магнитопровод этого элемента изготовлен из материала, нелинейно реагирующего на магнитное поле. Обычно сердечники изготавливают из ферромагнетиков либо ферримагнетиков, и когда термин «феррорезонанс» был введен Паулем Бушеро, теория ферримагнетизма еще не была сформирована до конца, а все материалы такого рода называли ферромагнетиками, вот и возник термин «феррорезонанс» для обозначения явления резонанса в цепи с нелинейной индуктивностью.

Феррорезонанс предполагает резонанс с насыщающейся индуктивностью . В обычном резонансном контуре емкостное и индуктивное сопротивления все время равны друг другу, и единственное условие возникновения перенапряжения или сверхтока — совпадение колебаний с резонансной частотой, это только одно стабильное состояние, и его легко предотвратить благодаря непрерывному контролю частоты или введением активного сопротивления.

С феррорезонансом ситуация иная. Индуктивное сопротивление связано с плотностью магнитного потока в сердечнике, например в железном сердечнике трансформатора, и принципиально получается два индуктивных сопротивления в зависимости от ситуации относительно кривой насыщения: индуктивное сопротивление линейное и индуктивное сопротивление при насыщении.

Феррорезонанс в трансформаторе напряжения: принцип работы стабилизатора напряжения

Феррорезонансный стабилизатор напряжения уже давно активно применяется не только в быту, но и в промышленности. Устройства этого класса позволяют выровнять напряжение переменного типа. В основе принципа функционирования заключается эффект электромагнитного резонанса в колебательном контуре. Такие нормализаторы обладают массой достоинств, но также имеют и свои недостатки.

Феррорезонансные явления в электрических сетях

Основные факторы, которые порождают феррорезонансные явления в электрических сетях – это элементы ёмкостного и индуктивного типа. Они способны формировать колебательные контуры в периоды переключения. Этот эффект особо заметен в трансформаторах силового типа, линейного вольтодобавочного, шунтирующих контурах и в аналогичных устройствах, которые оборудуются массивной обмоткой.

Данное явление бывает 2 типов: резонанс токов и напряжения.

Феррорезонанс напряжений возможен, когда в сети имеется индуктивность, характеризующаяся нелинейным вольт-амперным свойством. Данная характеристика свойственна катушкам индуктивности, где сердечники производятся из ферромагнитных компонентов. Особенно это касается выпрямителей линейки НКФ. Такое негативное явление обуславливается небольшим показателем сопротивлений омического и индуктивного типов по отношению к силовым трансформаторам.

Феррорезонанс в трансформаторе напряжения

Когда трансформатор напряжения подключается к сети, в ней формируются последовательно совмещённые LC-цепи, являющие собой контур резонансного типа. При последовательном подключении индуктивного элемента с нелинейным вольт-амперным свойством к элементу ёмкостного типа напряжение в этой зоне цепи характеризуется как активно-индуктивное.

По окончании определённого временного периода значение напряжения на индуктивном элементе становится пиковым, магнитопровод питается, а напряжение на компоненте ёмкостного типа продолжает расти. Феррорезонанс в трансформаторе напряжения наступает, когда напряжение индуктивности и ёмкостного элемента становится равнозначным.

Быстрый переход приложенного напряжения из активно-индуктивного типа в активно-ёмкостной именуется как “опрокидывание фазы”. Такой эффект опасен для электроприборов.

Феррорезонансные стабилизаторы

Феррезонансный стабилизатор

Феррорезонансные выпрямители не оборудуются встроенным вольтметром, вследствие чего сложно замерять выходной показатель напряжения сети. Отрегулировать величину напряжения собственноручно не получится. Стабилизаторы феррорезонансного типа частично искажают реальные показания, величина погрешности составляет до 12%.

Тем, кто долго пользуется такими устройствами, необходимо помнить, что они способны излучать магнитное поле, которое может нарушить правильное функционирование бытовой электротехники. Стабилизаторы такого класса настраиваются в заводских условиях, никаких дополнительных настроек в быту они не требуют.

Влияние стабилизатора на технику

Феррорезонансный стабилизатор напряжения, принцип работы которого непрост, воздействует на бытовую технику следующим образом:

  • Радиоприёмник – чувствительность приёма сигнала может быть уменьшена, показатель выходной мощности существенно снижается.
  • Музыкальный центр – выходная мощность такой техники может существенно снизиться, стирание и запись новых дисков значительно ухудшаются.
  • Телевизор – при подсоединении к стабилизатору можно наблюдать значительное снижение качества картинки на ТВ, отдельные цвета передаются неправильно.

Электрическая схема современных нормализаторов феррорезонансного типа улучшена, что позволяет им выдерживать большие нагрузки. Такие устройства могут гарантировать точную регулировку сетевого напряжения. Процедура корректировки выполняется трансформатором.

Режимы эксплуатации

Эксплуатационные режимы стабилизаторов зависят от ряда факторов. Прямое влияние имеет показатель мощности и класс устройства. Мощностные характеристики прибора могут быть разными, выбирать их надо с учётом типа подсоединяемой электротехники.

Режимы функционирования выпрямителя зависят от таких типов нагрузки:

  • индуктивная;
  • активная;
  • ёмкостная.

Активная нагрузка в чистой форме наблюдается крайне редко. Она необходима только в тех цепях, где переменное значение устройства не имеет ограничений. Нагрузки ёмкостного типа могут применяться только для тех выпрямителей, которые обладают невысокой мощностью.

Принцип действия феррорезонансных стабилизаторов

Первичная обмотка, на которую приходит напряжение входа, находится на участке 2 магнитопровода. Он имеет значительное поперечное сечение, чтобы сердечник был в ненасыщенном состоянии. На входе напряжение образует магнитный поток Ф2.

На зажимах вторичной обмотки создается напряжение выхода. К ней подключается нагрузка, находящаяся на 3 участке сердечника, и имеет малое сечение, и насыщенное состояние. при отклонениях напряжения сети и магнитного потока, величина его почти не меняется, а также не изменится ЭДС. При повышении магнитного потока некоторая часть его будет замыкаться по магнитному шунту.

Поток Ф2 становится синусоидальным. Если поток Ф2 подходит к амплитудной величине, то третий участок переходит в насыщение, а магнитный поток перестает повышаться, и возникает поток Ф1. В результате поток по магнитному шунту будет замыкаться только тогда, когда магнитный поток №2 по величине сравнивается с амплитудным. Это создает поток Ф3 несинусоидальным, а напряжение становится тоже не синусоидальным.

Наличие конденсатора дает возможность прибору работать с повышенным коэффициентом мощности. А коэффициент стабилизации зависит от наклона горизонтальной кривой 2 к абсциссе. Этот участок обладает большим наклоном, поэтому получить большую стабилизацию без вспомогательных приборов не получится. Прямая передача тока дает возможность добиться повышенного усиления.

Походы к выбору стабилизатора

Перечень параметров, по которым выбирают стабилизаторы, обязательно включает:

  • мощность нагрузки или отдаваемый номинальный ток;
  • выходное напряжение;
  • тип сети (однофазная – трехфазная).

Большую помощь окажет информация о стабильности сети, уровне импульсных помех в ней.

При определении номинальной мощности суммируют мощности всех потребителей защищаемой сети. Для оценки мощности номинальной нагрузки токовую нагрузочную способность входного автомата умножают на 220 В.

При прочих равных условиях выбирают однофазные модели линейных стабилизаторов, учитывают, что модульные конструкции более удобны в обслуживании.

Учитывают эстетические параметры и количество выходных розеток, рисунок 5.

Рис.5. Вариант исполнения однофазного стабилизатора

Окончательный выбор целесообразно выполнять с учетом производителя и места изготовления. Для определения качества техники юго-восточного производства, выпускаемой без контроля со стороны ведущих западных компаний, имеет смысл изучить профильные форумы. Такой подход позволяет сделать адекватный вывод о качестве прибора.

Кроме технических параметров обязательно принимают во внимание доступность сервисного обслуживания. Следует учесть, что в продаже имеется большой выбор 220-вольтовых однофазных и 380-вольтовых трехфазных устройств. Стабилизаторы с широким диапазоном регулировки и выходным напряжением других номиналов часто поставляются под заказ

Стабилизаторы с широким диапазоном регулировки и выходным напряжением других номиналов часто поставляются под заказ

Следует учесть, что в продаже имеется большой выбор 220-вольтовых однофазных и 380-вольтовых трехфазных устройств. Стабилизаторы с широким диапазоном регулировки и выходным напряжением других номиналов часто поставляются под заказ.

Промышленность выпускает широкую гамму бытовых стабилизаторов напряжения, что позволяет произвести  выбор конкретной модели устройства с учетом конкретной области применения.

Массовый характер рынка стабилизаторов определяет большое количество работающих на нем производящих предприятий, предлагающих свою продукцию через партнерскую сеть. Поэтому перед покупкой следует выполнить тщательный многокритериальный отбор продукта.

Влияние на технику

Феррорезонансные стабилизаторы напряжения могут повлиять на следующую технику:

  1. Телевизоры. Если вы подключите устройство к телевизору, тогда сможете заметить значительное уменьшение растра. Также некоторые цветовые лучи могут быть нарушены.
  2. Радиоприемники. Этот вид техники может потерять свою чувствительность. Выходная мощность приемника также может значительно уменьшиться.
  3. Магнитофоны. Выходная мощность этих устройств может значительно упасть. Стирание записей в этом случае также может ухудшиться.

Как видите, феррорезонансная продукция может иметь свои недостатки. Если вы не знаете, какие феррорезонансные стабилизаторы выбрать, тогда мы сейчас расскажем.

Бытовая техника постоянно улучшается. Именно поэтому производители стабилизаторов феррорезонансного типа также стараются улучшить свои товары. Они улучшают его схему, которая позволит справлять с высокими нагрузками.

Сейчас эта продукция может точно выполнять настройку напряжения. Процесс изменения и стабилизации напряжения происходит с помощью трансформатора. При необходимости он может добавлять или отнимать катушки.

Что такое феррорезонанс

Феррорезонанс— это явление резкого возрастания тока, приводящее к перегреву и повреждению преобразователя и сопутствующего электротехнического оборудования.

Вызывающий аварию резонанс наблюдается при возникновении колебательного контура с последовательным соединением индуктивности ТН и емкостью сети.

Почему появляется в трансформаторах

Явление резонанса возникает при незаземленной (изолированной) нейтрали совместно с неполнофазным режимом. При изолированной нейтрали ёмкость сети относительно земли образует последовательное соединение с индуктивностью конструкции незаземленного ТН. Неполнофазный режим возникает при частичном включении фаз, при фазовом разрыве или при коротком замыкании несимметричного типа.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий