Виды
По схеме построения индукционные датчики принято разделять только на 2 отдельных вида: одинарные и дифференцированные.
Одинарные
Устройства только с одним магнитопроводом. Такая схема обычно применяется при разработке бесконтактных выключателей.
Дифференциальные
Отличаются наличием сразу 2-ух магнитопроводов, каждый из которых специально сделанных в виде «ш». Это позволяет взаимокомпенсировать воздействие, оказываемое на сердечник, повышая таким образом точность производимых измерений. По сути, схема представляет из себя систему из 2-ух датчиков, соединенных общим якорем.
Конкретный производители
Ниже — мое субъективное мнение по датчикам, с которыми приходилось иметь дело.
«ТЕКО». Для тех, кто выбирает отечественного производителя. Эта челябинская компания существует с советских времен и в настоящее время выпускает большое разнообразие датчиков. К сожалению, по моему опыту, на их долю приходится большое количество электрических отказов. Также у них слабая механическая прочность. Надеюсь, в настоящее время фирма улучшила качество продукции. Несомненное преимущество этой компании — цена, которая может быть в 2–3 раза ниже импортных аналогов (исключение Китай). Пример применения индуктивного датчика «Теко» — рис. 4.
Рис. 4 — Пример применения индуктивного датчика «TEKO»
В данном случае активатор, который проезжает мимо датчика, сместился и поломал оригинальный датчик. Выход — был установлен датчик «Теко» с большой зоной срабатывания.
AUTONICS. Оптимальный выбор по соотношению цена/качество. Эта корейская фирма выпускает большое количество датчиков с неплохим качеством. Благодаря скромным вложениям в раскрутку бренда, цены остаются весьма приемлемыми.
На рис. 5 показан пример модернизации спаивающей головки упаковочной линии.
Рис. 5 — Пример модернизации спаивающей головки упаковочной линии
В верхней части — датчик Autonics. Ранее установили электрический концевой выключатель, как на нижней части фото. Чтобы исключить проблемы с контактами, было решено установить индуктивный датчик, с чем Autonics прекрасно справился и сбои прекратились. Завершением стала прокладка дополнительного провода питания и изготовление крепежной пластины.
OMRON. Это старый раскрученный бренд, поэтому цена на эти датчики довольно высока. Однако и качество на уровне.
На рис. 6 — датчики показывают положение механизма редуктора.
Рис. 6 — Датчик показывает положение механического редуктора.
В большинстве случаев установка датчиков раскрученных брендов нецелесообразна, поэтому они устанавливаются в оборудовании высокой ценовой категории.
ALLEN BRADLEY. Этот американский бренд, как Rolls-Royce в мире моторов. Цена весьма высока, а вот качество в конкретно взятом случае подкачало: датчик, установленный на крышке бункера сыпучего вещества, перестал работать (рис. 7).
Рис. 7 — Дитчик Allen Bradley
Оказалось, проблема в контактах разъема. Их подогнули и почистили. В данном случае при грамотной установке датчик «Теко» прекрасно бы справился. Кстати, разница в цене этих датчиков — примерно в 10 раз!
Следует сказать, что в настоящее время более 90% от общего числа индуктивных датчиков имеют замену на датчики других производителей. Редко бывают случаи, когда нужен какой-то определенный тип. Как правило, это связано с габаритами и особенностями монтажа. В пределах одного предприятия целесообразно остановить выбор на одном производителе.
Данная статья – вторая часть статьи про разновидности и принципы работы датчиков. Кто не читал – рекомендую, там очень много тонкостей разложено по полочкам.
Индуктивные датчики. Виды. Устройство. Параметры и применение
Индуктивные датчики – преобразователи параметров. Их работа заключается в изменении индуктивности путем изменения магнитного сопротивления датчика.
Большую популярность индуктивные датчики получили на производстве для измерения перемещений в интервале от 1 микрометра до 20 мм. Индуктивный датчик можно применять для замера уровней жидкости, газообразных веществ, давлений, различных сил. В этих случаях диагностируемый параметр преобразуется чувствительными компонентами в перемещение, далее эта величина поступает на индуктивный преобразователь.
Для замера давления применяются чувствительные элементы. Они играют роль датчиков приближения, предназначенные для выявления разных объектов бесконтактным методом.
Виды и устройство
Индуктивные датчики разделяются по схеме построения на 2 вида:
- Одинарные датчики.
- Дифференциальные датчики.
Первый вид модели имеет одну ветвь измерения, в отличие от дифференциального датчика, у которого две измерительные ветви.
В дифференциальной модели при изменении диагностируемого параметра изменяются индуктивности 2-х катушек. При этом изменение осуществляется на одинаковое значение с противоположным знаком.
Индуктивность катушки вычисляется по формуле: L = WΦ/I
Где W– количество витков; Ф – магнитный поток; I – сила тока, протекающего по катушке. Сила тока взаимосвязана с магнитодвижущей силой следующим отношением: I = Hl/W
Из этой формулы получаем: L = W²/Rm
Где R m = H*L/Ф – магнитное сопротивление.
Работа одинарного датчика заключается в свойстве дросселя, изменять индуктивность при увеличении или уменьшении воздушного промежутка.
Конструкция датчика включает в себя ярмо (1), витки обмотки (2), якорь (3), который фиксируется пружинами. По сопротивлению поступает переменный ток на обмотку. Сила тока в нагрузочной цепи вычисляется:
L – индуктивность датчика, rd – активное дроссельное сопротивление. Оно является постоянной величиной, поэтому изменение силы тока I может осуществляться только путем изменения составляющей индуктивности XL=IRн, зависящей от размера воздушного промежутка δ.
Каждой величине зазора соответствует некоторое значение тока, определяющего падение напряжения на резисторе Rн: Uвых=I*Rн – является сигналом выхода датчика. Можно определить следующую зависимость U вых = f (δ), при одном условии, что зазор очень незначительный и потоки рассеивания можно не учитывать, как и магнитное сопротивление металла Rмжв сравнении с магнитным сопротивлением зазора воздуха Rмв.
Окончательно получается выражение:
На практике активное сопротивление цепи несравнимо ниже индуктивного. Поэтому формула принимает вид:
Из недостатков одинарных можно отметить:
- При эксплуатации датчика на якорь воздействует сила притяжения к сердечнику. Эта сила не уравновешена никакими методами, поэтому она снижает точность функционирования датчика, и вносит некоторый процент погрешности.
- Сила нагрузочного тока зависит от амплитуды напряжения и ее частоты.
- Чтобы измерить перемещение в двух направлениях, нужно установить первоначальное значение зазора, что доставляет определенные неудобства.
Дифференциальные индуктивные датчики объединяют в себе два нереверсивных датчика и изготавливаются в виде некоторой системы, которая состоит из 2-х магнитопроводов, имеющих два отдельных источника напряжения. Для этого чаще всего применяется разделительный трансформатор (5).
Дифференциальные датчики классифицируются по форме сердечника:
- Индуктивные датчики с Ш-образной формой магнитопровода, выполненного в виде листов электротехнической стали. При частоте более 1 килогерца для сердечника используют пермаллой.
- Цилиндрические индуктивные датчики с круглым магнитопроводом.
Форму датчика выбирают в зависимости от конструкции и ее сочетания с механизмом. Использование магнитопровода Ш-образной формы является удобным для сборки катушки и снижения габаритных размеров индуктивного датчика.
Характеристики индуктивных датчиков
Чем отличаются датчики.
Конструкция, вид корпуса
Тут два основных варианта – цилиндрический и прямоугольный. Другие корпуса применяются крайне редко. Материал корпуса – металл (различные сплавы) или пластик.
Расстояние переключения (рабочий зазор)
Это то расстояние до металлической пластины, на котором гарантируется надёжное срабатывание датчика. Для миниатюрных датчиков это расстояние – от 0 до 2 мм, для датчиков диаметром 12 и 18 мм – до 4 и 8 мм, для крупногабаритных датчиков – до 20…30 мм.
Количество проводов для подключения
Подбираемся к схемотехнике.
2-проводные. Датчик включается непосредственно в цепь нагрузки (например, катушка пускателя). Так же, как мы включаем дома свет. Удобны при монтаже, но капризны к нагрузке. Плохо работают и при большом, и при маленьком сопротивлении нагрузки.
2-проводный датчик. Схема включения
Нагрузку можно подключать в любой провод, для постоянного напряжения важно соблюдать полярность. Для датчиков, рассчитанных на работу с переменным напряжением – не играет роли ни подключение нагрузки, ни полярность. Можно вообще не думать, как их подключать
Главное – обеспечить ток
Можно вообще не думать, как их подключать. Главное – обеспечить ток.
3-проводные. Наиболее распространены. Есть два провода для питания, и один – для нагрузки. Подробнее расскажу отдельно.
4- и 5-проводные. Такое возможно, если используется два выхода на нагрузку (например, PNP и NPN (транзисторные), или переключающие (реле). Пятый провод – выбор режима работы или состояния выхода.
Виды выходов датчиков по полярности
У всех дискретных датчиков может быть только 3 вида выходов в зависимости от ключевого (выходного) элемента:
Релейный. Тут всё понятно. Реле коммутирует необходимое напряжение либо один из проводов питания. При этом обеспечивается полная гальваническая развязка от схемы питания датчика, что является основным достоинством такой схемы. То есть, независимо от напряжения питания датчика, можно включать/выключать нагрузку с любым напряжением. Используется в основном в крупногабаритных датчиках.
Транзисторный PNP. Это – PNP датчик. На выходе – транзистор PNP, то есть коммутируется “плюсовой” провод. К “минусу” нагрузка подключена постоянно.
Транзисторный NPN. На выходе – транзистор NPN, то есть коммутируется “минусовой”, или нулевой провод. К “плюсу” нагрузка подключена постоянно.
Можно чётко усвоить разницу, понимая принцип действия и схемы включения транзисторов. Поможет такое правило: Куда подключен эмиттер, тот провод и коммутируется. Другой провод подключен к нагрузке постоянно.
Ниже будут даны схемы включения датчиков, на которых будет хорошо видно эти отличия.
Виды датчиков по состоянию выхода (НЗ и НО)
Какой бы ни был датчик, один из основных его параметров – электрическое состояние выхода в тот момент, когда датчик не активирован (на него не производится какое-либо воздействие).
Выход в этот момент может быть включен (на нагрузку подается питание) либо выключен. Соответственно, говорят – нормально закрытый (нормально замкнутый, НЗ) контакт либо нормально открытый (НО) контакт. В иностранной аппаратуре, соответственно – NС и NО.
То есть, главное, что надо знать про транзисторные выходы датчиков – то, что их может быть 4 разновидности, в зависимости от полярности выходного транзистора и от исходного состояния выхода:
- PNP NO
- PNP NC
- NPN NO
- NPN NC
Контакты датчиков также могут быть с задержкой включения или выключения. Про такие контакты также сказано в статье про приставки выдержки времени ПВЛ. А почему датчики, отвечающие за безопасность, должны быть обязательно с НЗ контактами – см. статью про Цепи безопасности в промышленном оборудовании.
Положительная и отрицательная логика работы
Это понятие относится скорее к исполнительным устройствам, которые подключаются к датчикам (контроллеры, реле).
ОТРИЦАТЕЛЬНАЯ или ПОЛОЖИТЕЛЬНАЯ логика относится к уровню напряжения, который активизирует вход.
ОТРИЦАТЕЛЬНАЯ логика: вход контроллера активизируется (логическая “1”) при подключении к ЗЕМЛЕ. Клемму S/S контроллера (общий провод для дискретных входов) при этом необходимо соединить с +24 В=. Отрицательная логика используется для датчиков типа NPN.
ПОЛОЖИТЕЛЬНАЯ логика: вход активизируется при подключении к +24 В=. Клемму контроллера S/S необходимо соединить с ЗЕМЛЕЙ. Используйте положительную логику для датчиков типа PNP. Положительная логика применяется чаще всего.
Продолжение статьи – здесь >>>. Во второй части даны реальные схемы и рассмотрено практическое применение различных типов датчиков с транзисторным выходом.
Схема принципиальная датчика
Для более чёткого рассмотрения картинки – сохраните её на ПК и увеличьте.
Схема построена как генератор с индуктивной обратной связью. Колебательный контур на элементах: L2, C2 задаёт частоту, катушка L1 и ёмкость C1 обратной связи обеспечивают генерацию, резисторы: R2, R4 задают режим транзистора по постоянному току и стабилизируют его. Развязку по высокой частоте обеспечивает цепочка: R1, C3.
Формирователь выходного сигнала выполнен по схеме удвоения напряжения на элементах: C4, C5, VD1, VD2, R3 диоды любые высокочастотные, резистор R3 подбирается в зависимости от необходимой скорости убывания выходного напряжения при срыве генерации. При наличии металлического лепестка между катушками генерация срывается.
Печатная плата изготавливается из фольгированного стеклотекстолита, для её крепления используется 2 мм. отверстие, в которое вставляется болт с надетой на него ограничивающей бобышкой (или просто кусок хлорвиниловой трубки от капельницы) и зажимается всё гаечкой, либо болт вкручивается в нарезанную на каком-то основании резьбу…
Индуктивные датчики следующего поколения
Тем не менее, в последние годы на рынке появилось новое поколение индуктивных датчиков, которые пользуются все большей популярностью не только в традиционных сферах, но и в промышленном, автомобильном, медицинском, коммунальном, научном и нефтегазовом секторах. В этих индуктивных датчиках нового поколения используются те же фундаментальные законы физики, что и традиционных устройствах, но в них применяются печатные платы и современная цифровая электроника, а не громоздкие трансформаторные конструкции и аналоговая электроника. Такой элегантный подход также позволяет использовать эти технологии в 2D и 3D-датчиках, линейных устройствах с укороченным (<� 1 мм) шагом перемещения, устройствах измерения криволинейной геометрии и высокопрецизионных энкодерах угла поворота.
Zettlex разработала инновационную технологию, которая легла в основу данного индуктивного метода нового поколения и за последние годы была значительно усовершенствована благодаря удачным конструкторским решениям. Использование печатных плат позволяет печатать датчики на тонких и гибких подложках, что также позволяет устранить необходимость в традиционных кабелях и разъемах. Основное преимущество нового подхода — его гибкость (как в буквальном смысле, тик и в смысле готовности разрабатывать индивидуальные конструкции для OEM-производителей). Данная технология обеспечивает аналогичное традиционному методу надежное и точное измерение в неблагоприятных условиях эксплуатации. Также она обладает следующими важными преимуществами:
- меньшая стоимость;
- повышенная точность;
- сниженный вес;
- упрощенная конструкция (в которой нет подшипников, уплотнений и втулок);
- компактный размер — особенно, учитывая длину хода по сравнению с традиционными LVDT;
- упрощенный электрический интерфейс — обычно включает источник постоянного тока и абсолютный цифровой сигнал.
Схемы сборки
Микроволновый
Для контроля открытых пространств и контроля наличия объектов в нужной зоне, существует емкостное реле. Принцип действия данного устройства заключается в измерении величины поглощения радиоволн. Каждый наблюдал или был участником этого эффекта, когда, приближаясь к работающему радиоприемнику, частота на которой он работает, сбивалась и появлялись помехи.
Поговорим о том, как сделать датчик движения микроволнового типа. Сердцем данного детектора является радио микроволновой генератор и специальная антенна.
На данной принципиальной схеме представлен простой способ сделать микроволновый датчик движения. Транзистор VT1 является высокочастотным генератором и по совместительству радио приемником. Детекторный диод выпрямляет напряжение, подавая смещение на базу транзистора VT2. Обмотки трансформатора Т1 настроены на разную частоту. В начальном состоянии, когда на антенну не воздействует внешняя емкость, амплитуды сигналов взаимно компенсируются и на детекторе VD1 нет напряжения.При изменении частоты, их амплитуды складываются и детектируются диодом. Транзистор VT2 начинает открываться. В качестве компаратора для четкой отработки состояний «включено» и «выключено», используется тиристор VS1, который управляет силовым реле на 12 Вольт.
Ниже предоставлена действенная схема реле присутствия на доступных компонентах, которая поможет собрать детектор движения своими руками или просто пригодится для ознакомления с устройством.
Тепловой
Тепловой ДД (PIR) самый распространенный сенсорный аппарат в хозяйственном секторе. Это объясняется дешевыми комплектующими, простой схемой сборки, отсутствием дополнительных сложных настроек, широким температурным диапазоном работы.
Готовый аппарат можно купить в любом магазине электротоваров. Часто этим сенсором снабжаются светильники, устройства сигнализации и прочие контроллеры. Однако сейчас мы расскажем, как сделать тепловой датчик движения в домашних условиях. Простая схема для повторения выглядит следующим образом:
Специальный тепловой датчик В1 и фото элемент VD1 составляют автоматизированный комплекс управления освещением. Устройство начинает работать только после наступления сумерек, порог срабатывания можно выставить резистором R2. Датчик подключает нагрузку при попадании перемещающегося человека в зону контроля. Время встроенного таймера для отключения можно выставить регулятором R5.
Самоделка из модуля для Arduino
Недорогой сенсор можно сделать из специальных готовых плат для радио конструктора. Так можно получить довольно миниатюрное устройство. Для сборки нам понадобятся модуль датчика движения для микроконтроллеров Arduino и модуль одноканального реле.
На каждой плате распаян разъем из трех штырьков, VCC +5 вольт, GND -5 вольт, OUT выход на детекторе и IN вход на плате реле. Для того, чтобы сделать устройство своими руками, необходимо с источника питания подать на платы 5 Вольт (плюс и минус), например, от зарядки для телефонов, а out и in соединить вместе. Соединения можно проводить с помощью разъемов, но надежнее будет все спаять. Можно руководствоваться схемой ниже. Миниатюрный транзистор, как правило, уже встроен в модуль реле, поэтому дополнительно его ставить не нужно.
Теперь вы знаете, как сделать датчик движения своими руками. Надеемся, предоставленные схемы и видео помогли вам в сборке самодельного сенсора!
Будет полезно прочитать:
Обзор емкостных датчиков CR
CR – серия емкостных цилиндрических датчиков от Autonics (рисунок 9).
Выпускаются датчики двух типоразмеров – CR18 и CR30 с зонами чувствительности 8 и 15 мм соответственно.
Двухпроводные нормально разомкнутые версии CRxx-xAO и двухпроводные нормально замкнутые версии CRxx-xAС работают с переменным выходным напряжением 110…240 В и током 5…200 мА. Частота срабатывания – 20 Гц.
Трехпроводные версии предназначены для работы в цепях постоянного напряжения 10…30 В с выходными токами до 200 мА. Их частота срабатывания достигает 50 Гц (таблица 8).
Таблица 8. Основные характеристики трехпроводных датчиков семейства CR
Параметр | Наименование | |||
CR18-8DN, CR18-8DP, CR18-8DN2 | CR30-15DN, CR30-15DP, CR30-15DN2 | CR18-8AO, CR18-8AC | CR30-15AO, CR30-15AC | |
Зона чувствительности, мм | 8 | 15 | 8 | 15 |
Гистерезис | Макс. 20% от расстояния срабатывания | |||
Стандартный объект для обнаружения (железо), мм | 50x50x1 | |||
Рабочий зазор, мм | 0…5,6 | 0…10,5 | 0…5,6 | 0…10,5 |
Напряжение питания ном., В | 12/24 | 100/240 | ||
Предельное напряжение питания, В | 0…30 | 85…264 | ||
Ток потребления, мА | Макс. 15 | Макс. 2,2 | ||
Частота срабатывания *, Гц | 50 | 20 | ||
Температурный дрейф | Макс. ±10% от расстояния срабатывания при температуре окружающей среды 20°С | |||
Номинальный ток, мА | Макс. 200 | |||
Сопротивление изоляции | Мин. 50 МОм (500 В=) | |||
Электрическая прочность диэлектрика | ~1500 В, 50/60 Гц в течение 1 минуты | |||
Стойкость к вибрациям | амплитуда 1 мм при частоте 10…55 Гц по каждому из направлений X, Y, Z в течение 2 часов | |||
Стойкость к ударным нагрузкам | 500 м/с2 (примерно 50g) направления X, Y, Z 3 раза | |||
Индикатор | Индикатор работы (красный светодиод) | |||
Рабочая температура, °C | -25…70 | |||
Температура хранения, °C | -30…80 | |||
Влажность, % | 35…95 | |||
Встроенная защита | от перенапряжения, обратной полярности | от перенапряжения | ||
Степень защиты (IP) | IP66 | IP65 | IP66 | IP65 |
Масса, г | 76 | 206 | 70 | 200 |
* – Частота срабатывания представляет собой среднее значение: стандартный объект с удвоенной шириной на расстоянии 1/2 от номинального. Состояние датчика можно определить по светодиоду. Если он светится – ток поступает в нагрузку.
Код для заказа датчиков серии CR включает 5 позиций: тип датчика, форму, диаметр головки, код зоны чувствительности, код типа выходного каскада (таблица 9).
Таблица 9. Именование датчиков семейства CR
C | R | 30 | -15 | DN | |
Тип датчика | Форма корпуса | Диаметр головки датчика, мм | Зона чувствительности, мм | Тип выхода | |
С – емкостной | R – цилиндр | 18 | 8 | DN | 3-проводной, NPN, нормально разомкнутый, питание 24 В DC |
30 | 15 | DN2 | 3-проводной, NPN, нормально замкнутый, питание 24 В DC | ||
DP | 3-проводной, PNP, нормально разомкнутый, питание 24 В DC | ||||
DP2 | 3-проводной, NPN, нормально замкнутый, питание 24 В DC | ||||
AO | 2-проводной, нормально разомкнутый, питание 110…240 В AC | ||||
AС | 2-проводной, нормально замкнутый, питание 110…240 В AC |
Стоит отметить и высокую степень защиты: IP66 – для CR18, IP66 – для CR30. Изоляционные свойства также на высоте. Так как емкостные датчики способны обнаруживать не только металлические объекты, то спектр приложений серии CR еще шире, чем у индуктивных датчиков. Сфера их применения:
- концевые выключатели станков;
- детекторы автоматических линий розлива молока, пива, и тому подобное;
- датчики уровня жидкости;
- детекторы обнаружения брака в текстильном производстве.
Рис.2.1. Внешний вид бесконтактного датчика
Бесконтактный выключатель (далее ВБ) осуществляет коммутационную операцию при попадании объекта воздействия в зону чувствительности выключателя. Отсутствие механического контакта между воздействующим объектом и чувствительным элементом ВБ обеспечивает высокую надежность его работы
Рис.2.2. Бесконтактный выключатель
Упрощенно, функциональная схема бесконтактного выключателя состоит из трех блоков:
Рис.2.3. Функциональная схема бесконтактного выключателя
При приближении объекта воздействия к активной поверхности чувствительного элемента происходит срабатывание бесконтактного выключателя. При этом коммутационный элемент производит замыкание или размыкание (или выполняет обе указанные операции) в цепях постоянного тока до 400 мА и в цепях переменного тока до 250 мА.
Бесконтактные датчики положения классифицируются по принципу действия чувствительного элемента — индуктивный, оптический, емкостный и др.
Бесконтактные выключатели — это первичные приборы для автоматизации технологического процесса различных отраслей промышленности, таких как
· станкостроение,
· автомобилестроение,
· нефтехимическая промышленность,
· машиностроение,
· пищевая промышленность и пр.
Столь широкая область применения ВБ обусловлена большим количеством возможных технологических решений, реализуемых с их помощью:
· подсчёт количества объектов,
· контроль положения объекта,
· регистрация наличия или отсутствия объекта,
· отбор объектов по их габаритам, цвету и другим физическим свойствам,
· определение скорости,
· определение угла поворота
и многое другое.
2.1.1. Индуктивные датчики.
Индуктивный датчик — бесконтактный датчик предназначенный для бесконтактного получения информации о перемещениях рабочих органов машин, механизмов, роботов и т.п. и преобразования этой информации в электрический сигнал.
Индуктивный датчик распознает и соответственно реагирует на все токопроводящие предметы.
Индуктивные датчики широко используются для решения задач АСУ ТП. Выполняются с нормально разомкнутым или нормально замкнутым контактом.
Принцип действия основан на изменении параметров магнитного поля, создаваемого катушкой индуктивности внутри датчика.
Принцип действия бесконтактного конечного выключателя (ВК) основан на изменении амплитуды колебаний генератора при внесении в активную зону датчика металлического, магнитного, ферромагнитного или аморфного материала определенных размеров. При подаче питания на конечный выключатель в области его чувствительной поверхности образуется изменяющееся магнитное поле, наводящее во внесенном в зону материале вихревые токи, которые приводят к изменению амплитуды колебаний генератора. В результате вырабатывается аналоговый выходной сигнал, величина которого изменяется от расстояния между датчиком и контролируемым предметом. Триггер преобразует аналоговый сигнал в логический, устанавливая уровень переключения и величину гистерезиса
Устройство и схема
Индукционный датчик, как и любое электронное устройство, состоит из связанных друг с другом узлов, обеспечивающих бесперебойность его работы. В качестве основных элементов аппарата можно выделить следующее.
Генератор
Ключевой задачей генератора является создание магнитного поля, на основе которого, в частности, строится принцип действия индукционного датчика, а также образуются зоны активности с объектом.
Триггер Шмидта
Триггер Шмидта представляет собой отдельный элемент, основным назначением которого считается обеспечение гистерезиса в процессе переключения устройства.
Усилитель
Усилительное устройство используется в качестве элемента, способного повышать значение амплитуды импульса, что позволяет сигналу быстрее достигать необходимого параметра.
Специальный индикатор
Диодный индикатор, свидетельствующий о фактическом состоянии контроллера. Кроме того, светодиод используется для обеспечения достаточного контроля функционирования индукционного датчика, а также, чтобы обеспечить достаточную оперативность в процессе настройки.
Компаунд
Компаунд предназначается для защиты устройства, поскольку может предотвратить попадание жидкости, в частности воды, внутрь корпуса индукционного датчика, а также снижает риск загрязнения оборудования, так как пыль может спровоцировать его поломку.
ПРИМЕНЕНИЕ И СПЕЦИФИКА
В промышленности и технике, индуктивные элементы постепенно вытесняют механические концевые выключатели. Индуктивный бесконтактный датчик замыкает-размыкает управляемую цепь при попадании металла в зону чувствительности.
Различные кинематические схемы позволяют использовать устройство для контроля состояния дверей, створок, люков, положения деталей, ограничения хода подвижных элементов, системах защитного отключения, блокировки включения.
Индуктивный датчик положения
позволяет фиксировать перемещение объекта расстоянием от нескольких микрометров до сантиметров. По устройству, в большинстве случаев, это дифференциальный трансформатор. Ток со вторичной обмотки подается на систему автоматизированного управления, которая контролирует работу всего агрегата, линии, машины. По такому же принципу устроены элементы измерения углов поворота.
Индуктивный датчик давления
имеет электромеханическую конструкцию. Основой является элемент фиксирующий перемещение, якорь которого соединен с поршнем или мембраной. Сила, возникающая в результате воздействия давления жидкости или газа, уравновешивается пружиной, вынуждает занимать якорь определенное положение. Информация переводится в форму электронного сигнала, передается на КИП или АСУ.
Подобным образом устроены приборы измерения расхода жидкостей (давление снимается после дросселя определенного диаметра и пропускной способности), уровня.
Индуктивный датчик скорости
отличается от бесконтактных выключателей наличием блока измерения частоты импульсов. Зубчатое колесо, вращаясь, периодически воздействует на зону чувствительности, генерируя импульсы определенной частоты, зависящие от скорости движения. Частота сравнивается блоком измерений, передается далее на КИП, АСУ, либо коммутирующий элемент.
По аналогичному принципу работают приборы измерения частоты, направления вращения, положения коленчатого вала.
По типу подключения, количеству выходов, промышленность выпускает датчики:
- двухпроводные — включаемые непосредственно в управляемую сеть. Бесконтактные выключатели, элементы сигнализации, защиты.
- трехпроводные — питание выделено отдельно (как правило это синий и красный выводы), нагрузка — сигнал, третий (черный) проводник;
- четырехпроводные — имеют два выхода для передачи информации;
- пятипроводные — пятый, вход, используется для управления режимами работы.