Самостоятельный расчет тепловой нагрузки на отопление: часовых и годовых показателей

Обзор программ

Для удобства расчётов применяются любительские и профессиональные программы вычисления гидравлики.

Самой популярной является Excel.

Можно воспользоваться онлайн-расчётом в Excel Online, CombiMix 1.0, или онлайн-калькулятором гидравлического расчёта. Стационарную программу подбирают с учётом требований проекта.

  • HERZ C.O. 3.5 – производит расчёт по методу удельных линейных потерь давления.
  • DanfossCO и OvertopCO – умеют считать системы с естественной циркуляцией.
  • «Поток» (Potok) — позволяет применять метод расчёта с переменным (скользящим) перепадом температур по стоякам.

Следует уточнять параметры ввода данных по температуре — по Кельвину/по Цельсию.

Порядок расчета теплоотдачи радиатора отопления

В основе выбора отопительных устройств для установки в доме или квартире лежит максимально точный расчет теплоотдачи радиаторов отопления. Каждому потребителю с одной стороны хочется сэкономить на обогреве жилья и поэтому нет желания приобретать лишние батареи, но если их будет недостаточно, комфортной температуры достичь не удастся.

Способов, как рассчитать теплоотдачу радиатора, существует несколько.

Вариант первый

. Это самый простой способ, как рассчитать батареи отопления. в его основе – количество наружных стен и окон в них.

Порядок вычислений следующий:

  • когда в комнате всего одна стена и окно, тогда на каждые 10 «квадратов» площади требуется 1 кВт тепловой мощности приборов отопления (детальнее: «Как рассчитать мощность радиатора отопления — делаем расчет мощности правильно «);
  • если имеется 2 наружные стены, тогда минимальная мощность батарей должна составлять 1,3 кВт на 10 м².

Вариант второй

. Он более сложен, но позволяет иметь более точные данные о необходимой мощности приборов.

В данном случае расчет теплоотдачи радиатора (батарей) отопления производится по формуле:

S x h x41, где S — площадь помещения, для которого выполняются вычисления; H — высота комнаты; 41 – минимальная мощность на один кубометр объема помещения.

Полученный итог будет требуемой теплоотдачей для радиаторов отопления. Далее эту цифру делят на номинальную тепловую мощность, которую имеет одна секция данной модели батареи. Узнать эту цифру можно в инструкции, прилагаемой производителем к своему изделию. Результатом расчета батарей отопления станет необходимое количество секций, чтобы теплоснабжение конкретного помещения было эффективным. Если полученное число дробное, тогда его округляют в большую сторону. Лучше небольшой избыток тепла, чем его недостаток.

Тепловые нагрузки объекта

Расчет тепловых нагрузок производится в следующей последовательности.

  • 1. Общий объем зданий по наружному обмеру: V=40000 м3.
  • 2. Расчетная внутренняя температура отапливаемых зданий составляет: tвр = +18 С — для административных зданий.
  • 3. Расчетный расход тепла на отопление зданий:

4. Расход тепла на отопление при любой температуре наружного воздуха определяется по формуле:

где: tвр — температура внутреннего воздуха, С; tн — температура наружного воздуха, С; tн0 — самая холодная температура наружного воздуха за отопительный период, С.

  • 5. При температуре наружного воздуха tн = 0С, получим:
  • 6. При температуре наружного воздуха tн= tнв = -2С, получим:
  • 7. При средней температуре наружного воздуха за отопительный период (при tн = tнср.о = +3,2С) получим:
  • 8. При температуре наружного воздуха tн = +8С получим:
  • 9. При температуре наружного воздуха tн = -17С, получим:

10. Расчетный расход тепла на вентиляцию:

,

где: qв — удельный расход тепла на вентиляцию, Вт/(м3·К), принимаем qв = 0,21- для административных зданий.

11. При любой температуре наружного воздуха расход тепла на вентиляцию определяется по формуле:

  • 12. При средней температуре наружного воздуха за отопительный период (при tн = tнср.о = +3,2С) получим:
  • 13. При температуре наружного воздуха = = 0С, получим:
  • 14. При температуре наружного воздуха = = +8С, получим:
  • 15. При температуре наружного воздуха ==-14С, получим:
  • 16. При температуре наружного воздуха tн = -17С, получим:

17. Среднечасовой расход тепла на горячее водоснабжение, кВт:

где: m — число персонала, чел.; q — расход горячей воды на одного персонала в сутки, л/сут (q = 120 л/сут.); с — теплоемкость воды, кДж/кг (с = 4,19 кДж/кг); tг — температура воды горячего водоснабжения, С (tг = 60С); ti — температура холодной водопроводной воды в зимний tхз и летний tхл периоды, С (tхз = 5С, tхл = 15С);

— среднечасовой расход тепла на горячее водоснабжение зимой, составит:

— среднечасовой расход тепла на горячее водоснабжение летом:

  • 18. Полученные результаты сведем в таблицу 2.2.
  • 19. По полученным данным строим суммарный часовой график расхода тепла на отопление, вентиляцию и горячее водоснабжение объекта:

; ; ; ;

20. На основании полученного суммарного часового графика расхода тепла строим годовой график по продолжительности тепловой нагрузки.

Таблица 2.2 Зависимость расхода тепла от температуры наружного воздуха

Расход теплоты

tнм= -17С

tно= -14С

tнв=-2С

tн= 0С

tср.о=+3,2С

tнк= +8С

, МВт

0,91

0,832

0,52

0,468

0,385

0,26

, МВт

0,294

0,269

0,168

0,151

0,124

0,084

, МВт

0,21

0,21

0,21

0,21

0,21

0,21

, МВт

1,414

1,311

0,898

0,829

0,719

0,554

1,094

1,000

0,625

0,563

0,463

0,313

Годовой расход теплоты

Для определения расхода теплоты и его распределения по сезонам (зима, лето), режимов работы оборудования и графиков его ремонта необходимо знать годовой расход топлива.

1. Годовой расход теплоты на отопление и вентиляцию рассчитывается по формуле:

,

где: — средний суммарный расход теплоты на отопление за отопительный период; — средний суммарный расход теплоты на вентиляцию за отопительный период, МВт; — продолжительность отопительного периода.

2. Годовой расход теплоты на горячее водоснабжение:

где: — средний суммарный расход теплоты на горячее водоснабжение, Вт; — длительность работы системы горячего водоснабжения и продолжительность отопительного периода, ч (обычно ч); — коэффициент снижения часового расхода горячей воды на горячее водоснабжение в летний период; — соответственно температуры горячей воды и холодной водопроводной воды зимой и летом, С.

3. Годовой расход теплоты на тепловые нагрузки отопления, вентиляцию, горячее водоснабжение и технологическую нагрузку предприятий по формуле:

,

где: — годовой расход теплоты на отопление, МВт; — годовой расход теплоты на вентиляцию, МВт; — годовой расход теплоты на горячее водоснабжение, МВт; — годовой расход теплоты на технологические нужды, МВт.

МВтч/год.

Нормы в жилых помещениях

Чтобы понимать, когда действительно актуально подавать на перерасчет оплаты за коммунальную услугу и требовать принятия какие-либо мер по обеспечению тепла, необходимо знать нормы тепла в жилых помещениях. Эти нормы полностью урегулированы российским законодательством.

Так в тёплое время года жилые помещения не отапливаются и нормами для них являются 22-25 градусов тепла. В холодное же время применимы следующие показатели:

Тем не менее, не стоит забывать и о здравом смысле. Например, спальни должны обязательно проветриваться, в них не должно быть слишком жарко, но и холодно быть также не может. Температурный режим в детской комнате должен регулироваться соответственно возрасту ребёнка. Для грудничка это верхний предел. По мере взросления планка снижается к нижним границам.

Тепло в ванной зависит также от влажности данной комнаты. Если помещение плохо вентилируется, возникает большое содержание воды в воздухе, а это создаёт ощущение сырости и может быть не безопасно для здоровья жильцов.

После монтажа системы отопления необходимо настроить температурный режим. Проводить эту процедуру нужно согласно существующим нормам.

Требования к температуре теплоносителя изложены в нормативных документах, которые устанавливают проектирование, укладку и использование инженерных систем жилых и общественных сооружений. Они описаны в Государственных строительных нормах и правилах:

  • ДБН (В. 2.5-39 Тепловые сети);
  • СНиП 2.04.05 «Отопление вентиляция и кондиционирование».

Для расчетной температуры воды в подаче принимается та цифра, которая равняется температуре воды на выходе из котла, согласно его паспортным данным.

Для индивидуального отопления решать, какая должна быть температура теплоносителя, следует с учетом таких факторов:

  1. Начало и завершение отопительного сезона по среднесуточной температуре на улице +8 °C на протяжении 3 суток;
  2. Средняя температура внутри отапливаемых помещений жилищно-коммунального и общественного значения должна составлять 20 °C, а для промышленных зданий 16 °C ;
  3. Средняя расчетная температура должна соответствовать требованиям ДБН В.2.2-10, ДБН В.2.2.-4, ДСанПиН 5.5.2.008, СП №3231-85.

Согласно СНиП 2.04.05 «Отопление вентиляция и кондиционирование» (пункт 3.20) предельные показатели теплоносителя такие:

В зависимости от внешних факторов, температура воды в системе отопления может быть от 30 до 90 °С. При нагреве свыше 90 °С начинают разлагаться пыль и лакокрасочное покрытие. По этим причинам санитарные нормы запрещают осуществлять больший нагрев.

Для расчета оптимальных показателей могут быть использованы специальные графики и таблицы, в которых определены нормы в зависимости от сезона:

  • При среднем показателе за окном 0 °С подача для радиаторов с различной разводкой устанавливается на уровне от 40 до 45 °С, а температура обратки – от 35 до 38 °С;
  • При -20 °С на подачу осуществляется нагрев от 67 до 77 °С, а норма обратки при этом должна быть от 53 до 55 °С;
  • При -40 °С за окном для всех приборов отопления ставят максимально допустимые значения. На подаче это – от 95 до 105 °С, а на обратке – 70 °С.

Расчет потерь тепла по площади помещений

Первым методом расчета тепловой нагрузки системы отопления пользуются для укрупненного определения мощности системы отопления всего дома и общего понимания количества и типа радиаторов, а также мощности котельного оборудования. Так как метод не учитывает регион строительства (расчетную наружную температуру зимой), количество потерь тепла через фундаменты, крыши или нестандартное остекление, то количество потерь тепла, рассчитанное укрупненным методом исходя из площади помещения, может быть как больше, так и меньше фактических значений.

Источники теплопотерь здания

А при использовании современных теплоизоляционных материалов мощность котельного оборудования может быть определена с большим запасом. Таким образом, при устройстве систем отопления возникнет большой перерасход материалов и будет приобретено более дорогостоящее оборудование. Поддержание комфортной температуры в помещениях будет возможно только при условии, что будет установлена современная автоматика, которая не допустит перегрева помещений выше комфортных температур.

В худшем случае, мощность системы отопления может быть занижена и дом в самые холодные дни не будет прогрет.

Тем не менее, этим способом определения мощности систем отопления пользуются достаточно часто. Следует только понимать, в каких случаях такие укрупненные расчеты приближены к реальности.

Итак, формула для укрупненного определения количества теплопотерь выглядит следующим образом:Q=S*100 Вт (150 Вт), Q — требуемое количество тепла, необходимое для обогрева всего помещения, Вт S — отапливаемая площадь помещения, м? Значение 100-150 Ватт является удельным показателем количества тепловой энергии, приходящейся для обогрева 1 м?. При использовании первого метода для укрупненного метода расчета тепловой мощности следует ориентироваться на следующие рекомендации:

  • В случае, когда в расчетном помещении из наружных ограждающих конструкций имеются одно окно и одна наружная стена, а высота потолков менее трех метров, то на 1м2 отапливаемой площади приходится 100 Вт тепловой энергии.
  • При расчете углового помещения с двумя оконными конструкциями или балконными блоками либо помещение высотой более трех метров, то в диапазон удельной тепловой энергии на 1 м2 составляет от 120 до 150 Вт.
  • Если же прибор отопления в будущем планируется устанавливать под окном в нише либо декорировать защитными экранами, поверхность радиаторов и, следовательно, их мощность необходимо увеличить на 20-30%. Это обусловлено тем, что тепловая мощность радиаторов будет частично тратиться на прогрев дополнительных конструкций.

Факторы, влияющие на ТН

Теплоизоляция — внутренняя или наружная — значительно снижает теплопотери

На потерю тепла влияет множество факторов:

  • Фундамент – утепленный вариант удерживает тепло в доме, неутепленный пропускает до 20%.
  • Стена – у пористого бетона или деревобетона пропускная способность намного ниже, чем у кирпичной стены. Красный глиняный кирпич лучше удерживает тепло, чем силикатный. Важна и толщина перегородки: у стены из кирпича толщиной в 65 см и пенобетона толщиной в 25 см одинаковый уровень теплопотерь.
  • Утепление – теплоизоляция существенно меняет картину. Внешнее утепление пенополиуретаном – лист толщиной в 25 мм – равно по эффективности второй кирпичной стене толщиной в 65 см. Отделка пробкой внутри – лист в 70 мм – заменяет 25 см пенобетона. Специалисты не зря утверждают, что эффективное отопление начинается с правильного утепления.
  • Крыша – скатная конструкция и утепленный чердак снижают потери. Плоская крыша из железобетонных плит пропускает до 15% тепла.
  • Площадь остекления – показатель теплопроводности у стекла очень велик. Какими бы герметичными ни были рамы, сквозь стекло тепло уходит. Чем больше окон и чем больше их площадь, тем выше тепловая нагрузка на здание.
  • Вентиляция – уровень теплопотерь зависит от производительности устройства и частоты использования. Система рекуперации позволяет несколько уменьшить потери.
  • Разница между температурой на улице и внутри дома – чем она больше, тем выше нагрузка.
  • Распределение тепла внутри здания – влияет на показатели для каждой комнаты. Помещения внутри здания остывают меньше: при расчетах комфортной температурой здесь считают величину в +20 С. Торцевые комнаты остывают быстрее – нормальной температурой здесь будет +22 С. На кухне достаточно нагревать воздух до +18 С, так как здесь много других источников тепла: плита, духовка, холодильник.

Формула расчета

Нормативы расхода тепловой энергии

Тепловые нагрузки рассчитываются с учетом мощности отопительного агрегата и тепловых потерь здания. Поэтому, чтобы определить мощность проектируемого котла, необходимо теплопотери здания умножить на повышающий коэффициент 1,2. Это своеобразный запас, равный 20%.

Для чего необходим такой коэффициент? С его помощью можно:

  • Прогнозировать падение давления газа в магистрали. Ведь зимой потребителей прибавляется, и каждый старается взять топлива больше, чем остальные.
  • Варьировать температурный режим внутри помещений дома.

Добавим, что тепловые потери не могут распределяться по всей конструкции здания равномерно. Разность показателей может быть достаточно большой. Вот некоторые примеры:

  • Через наружные стены покидает здание до 40% тепла.
  • Через полы — до 10%.
  • То же самое относится и к крыше.
  • Через вентиляционную систему — до 20%.
  • Через двери и окна — 10%.

Итак, с конструкцией здания разобрались и сделали одно очень важное заключение, что от архитектуры самого дома и места его расположения зависят потери тепла, которые необходимо компенсировать. Но многое также определяется и материалами стен, крыши и пола, а также наличием или отсутствием теплоизоляции. Это немаловажный фактор

Это немаловажный фактор.

К примеру, определим коэффициенты, снижающие теплопотери, зависящие от оконных конструкций:

  • Обычные деревянные окна с обычными стеклами. Для расчета тепловой энергии в данном случае используется коэффициент, равный 1,27. То есть через такой вид остекления происходит утечка тепловой энергии, равной 27% от общего показателя.
  • Если установлены пластиковые окна с двухкамерными стеклопакетами, то используется коэффициент 1,0.
  • Если установлены пластиковые окна из шестикамернного профиля и с трехкамерным стеклопакетом, то берется коэффициент 0,85.

Идем дальше, разбираясь с окнами. Существует определенная связь площади помещения и площади оконного остекления. Чем больше вторая позиция, тем выше тепловые потери здания. И здесь есть определенное соотношение:

  • Если площадь окон по отношению к площади пола имеет всего лишь 10%-ный показатель, то для расчета тепловой мощности системы отопления используется коэффициент 0,8.
  • Если соотношение располагается в диапазоне 10-19%, то применяется коэффициент 0,9.
  • При 20% — 1,0.
  • При 30% —2.
  • При 40% — 1,4.
  • При 50% — 1,5.

И это только окна. А есть еще влияние материалов, которые использовались в строительстве дома, на тепловые нагрузки. Расположим их в таблице, где стеновые материалы будут располагаться с уменьшением тепловых потерь, а значит, их коэффициент будет также снижаться:

Вид строительного материала

Как видите, разница от используемых материалов существенная. Поэтому еще на стадии проектирования дома необходимо точно определиться с тем, из какого материала он будет возводиться. Конечно, многие застройщики строят дом на основе бюджета, выделенного на строительство. Но при таких раскладках стоит пересмотреть его. Специалисты уверяют, что лучше вложиться первоначально, чтобы впоследствии пожинать плоды экономии от эксплуатации дома. Тем более что система отопления зимой составляет одну из главных статей расхода.

Размеры комнат и этажность здания

Схема системы отопления

Итак, продолжаем разбираться в коэффициентах, влияющих на формулу расчета тепла. Как влияют размеры помещения на тепловые нагрузки?

  • Если высота потолков в вашем доме не превышает 2,5 метра, то в расчете учитывается коэффициент 1,0.
  • При высоте 3 м уже берется 1,05. Незначительная разница, но она существенно влияет на тепловые потери, если общая площадь дома достаточно велика.
  • При 3,5 м — 1,1.
  • При 4,5 м —2.

А вот такой показатель, как этажность постройки, влияет на теплопотери помещения по-разному. Здесь необходимо учитывать не только количество этажей, но и место помещения, то есть, на каком этаже оно расположено. К примеру, если это комната на первом этаже, а сам дом имеет три-четыре этажа, то для расчета используется коэффициент 0,82.

При перемещении помещения в верхние этажи повышается и показатель теплопотерь. К тому же придется учитывать чердак — утеплен он или нет.

Как видите, чтобы точно подсчитать тепловые потери здания, необходимо определиться с различными факторами. И их все обязательно надо учитывать. Кстати, нами были рассмотрены не все факторы, снижающие или повышающие тепловые потери. Но сама формула расчета будет в основном зависеть от площади отапливаемого дома и от показателя, который называется удельным значением тепловых потерь. Кстати, в данной формуле оно стандартное и равно 100 Вт/м². Все остальные составляющие формулы — коэффициенты.

Расчет радиатора отопления по площади

Зависит он от материала, из которого они изготовлены. Чаще всего сегодня используются биметаллические, алюминиевые, стальные, значительно реже чугунные радиаторы. Каждый из них имеет свой показатель теплоотдачи (тепловой мощности). Биметаллические радиаторы при расстоянии между осями в 500 мм, в среднем имеют 180 — 190 Вт. Радиаторы из алюминия имеют практически такие же показатели.

Теплоотдача описанных радиаторов рассчитывается на одну секцию. Радиаторы стальные пластинчатые являются неразборными. Поэтому их теплоотдача определяется исходя из размера всего устройства. Например, тепловая мощность двухрядного радиатора шириной 1 100 мм и высотой 200 мм будет 1 010 Вт, а панельного радиатора из стали шириной 500 мм, а высотой 220 мм составит 1 644 Вт.

В расчет радиатора отопления по площади входят следующие базовые параметры:

— высота потолков (стандартная – 2,7 м),

— тепловая мощность (на кв. м – 100 Вт),

— одна внешняя стена.

Эти расчеты показывают, что на каждые 10 кв. м необходимо 1 000 Вт тепловой мощности. Этот результат делится на тепловую отдачу одной секции. Ответом является необходимое количество секций радиатора.

Для южных районов нашей страны, так же как и для северных, разработаны понижающие и повышающие коэффициенты.

Точные расчеты тепловой нагрузки

Значение теплопроводности и сопротивление теплопередачи для строительных материалов

Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.

Что же такое сопротивление теплопередачи (R)? Это величина, обратная теплопроводности (λ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:

R=d/λ

Расчет по стенам и окнам

Сопротивление теплопередачи стен жилых зданий

Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.

В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:

  • Площадь стен – 280 м². В нее включены окна – 40 м²;
  • Материал изготовления стен – полнотелый кирпич (λ=0.56). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи — R=0.36/0.56= 0,64 м²*С/Вт;
  • Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт;
  • Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
  • Сопротивление теплопередачи окон — 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).

Фактически тепловые потери через стены составят:

(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С

Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:

124*(22+15)= 4,96 кВт/час

Расчет по вентиляции

Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:

(480*40*5)/24= 4000 кДж или 1,11 кВт/час

Суммируя все полученные показатели можно найти общие тепловые потери дом:

4,96+1,11=6,07 кВт/час

Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:

(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт

Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.

Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.

Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.

Определяем тепловые потери

Теплопотери здания можно рассчитывать отдельно для каждой комнаты, имеющей внешнюю часть, контактирующую с окружающей средой. Затем полученные данные суммируются. Для частного дома удобнее определять тепловые потери всего строения в целом, считая потери тепла отдельно через стены, кровлю, и поверхность пола.

Следует отметить, что расчет тепловых потерь дома достаточно сложный процесс, требующий специальных знаний. Менее точный, но при этом вполне достоверный результат можно получить на основе онлайн калькулятора расчета тепловых потерь.

При выборе онлайн калькулятора предпочтение лучше отдавать моделям, учитывающим все возможные варианты потери тепла. Вот их перечень:

поверхность наружных стен

Решив воспользоваться калькулятором, необходимо знать геометрические размеры строения, характеристики материалов, из которых сделан дом, а также их толщину. Наличие теплоизоляционного слоя и его толщина учитываются отдельно.

На основании перечисленных исходных данных онлайн калькулятор выдает общее значение тепловых потерь дома. Определить, насколько точные получены результаты можно разделив полученный результат на общий объем здания и получив при этом удельные потери тепла, величина которых должна находиться в интервале от 30 до 100 Вт.

Если цифры, полученные с помощью онлайн калькулятора, выходят далеко за пределы указанных значений, можно предположить, что в расчет закралась ошибка. Чаще всего причиной ошибок в расчетах является несоответствие размерности используемых в расчете величин.

Немаловажный факт: данные онлайн калькулятора актуальны только для домов и строений с качественными окнами и хорошо работающей системой вентиляции, в которых нет места сквознякам и иным потерям тепла.

Для уменьшения потерь тепла можно выполнить дополнительную тепловую изоляцию строения, а также использовать подогрев воздуха, поступающего в помещение.

точный расчёт и Избыточность

Стоит сначала оговорить одну тонкость расчетов: полностью правильные значения теплопотерь через пол, потолок и стенки, каковые приходится компенсировать системе отопления, вычислить фактически нереально. Возможно сказать только о той либо другой степени достоверности оценок.

Обстоятельство — в том, что на потери тепла воздействует через чур много факторов:

  • Тепловое сопротивление капитальных стен и всех слоев отделочных материалов.
  • Наличие либо отсутствие мостиков холода.
  • Роза расположение и ветров дома на рельефе местности.
  • Работа вентиляции (которая, со своей стороны, опять-таки зависит от направления и силы ветра).
  • стен инсоляции и Степень окон.

Имеется и хорошие новости. Фактически все современные системы и отопительные котлы распределенного отопления (утепленные полы, электрические и газовые конвектора и т.д.) снабжаются термостатами, дозирующими расход тепла в зависимости от температуры в помещении.

С практической стороны это указывает, что избыточная тепловая мощность повлияет только на режим работы отопления: скажем, 5 КВт*ч тепла будут даны не за один час постоянной работы с мощностью 5 КВт, а за 50 мин. работы с мощностью 6 КВт. Следующие 10 мин. котел либо другой нагревательный прибор совершит в режиме ожидания, не потребляя электричество либо энергоноситель.

Следовательно: при вычисления тепловой нагрузки наша задача — выяснить ее минимально допустимое значение.

Единственное исключение из неспециализированного правила связано с работой классических твердотопливных котлов и обусловлено тем, что понижение их тепловой мощности связано с важным падением КПД из-за неполного сгорания горючего. Неприятность решается установкой в контур теплоаккумулятора и дросселированием отопительных устройств термоголовками.

Котел по окончании растопки работает на полной мощности и с большим КПД до полного прогорания угля либо дров, после этого накопленное теплоаккумулятором тепло дозировано расходуется на поддержание оптимальной температуры в помещении.

Большинство других нуждающихся в расчете параметров также допускает некоторую избыточность. Но, об этом — в соответствующих разделах статьи.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий