Что необходимо для подсчета удельной тепловой характеристики здания

Просмотр аккаунта человека без регистрации

В прошлом пункте мы с вами искали просто обычные картинки на схожую тематику, но ведь можно же смотреть фото определенных людей, для этого мы точно также пользуемся официальным сайтом, а не приложением. Если знаете адрес страницы либо логин пользователя, фотографии которого хотите посмотреть, то хорошо, можно прямо сейчас зайти на него, воспользовавшись любым браузером. Если не знаете адрес страницы, а человек знаменитый, то можно точно также поискать его фотки, воспользовавшись тегами. Например, для того чтобы найти фотографии Бузовой в Инстаграме, я в адресной строке браузера ввел https://www.instagram.com/explore/tags/бузова/.

Если вы знаете логин человека в Инста, то для того чтобы посмотреть его фотки необходимо перейти воспользоваться следующим адресом:

https://www.instagram.com/логин-пользователя/

Например, чтобы посмотреть фотографии Роналду я ввел в адресной строке браузера

https://www.instagram.com/cristiano/.

Таким образом, можно посмотреть фотографии на любую тематику и любого человека, который выложил фотки в Инстаграм, если его аккаунт не является закрытым.

Инстаграм – одна из самых популярных социальных сетей, которая активно используется рядовыми пользователями и медийными личностями: звездами шоу-бизнеса, политиками, общественными деятелями и представителями сферы искусств – художниками, начинающими музыкантами, писателями и другими.

Всего за несколько лет платформа Инстаграм собрала более 800 миллионов активных уникальных пользователей, и ежедневно эта цифра растет.

Популярные бренды и магазины уже давно завели свои собственные странички, на которых можно ознакомиться с ассортиментом и даже заказать понравившийся продукт. Да и проверять ленты таблоидов для поиска новостей о любимых певцах, актерах и других звездах больше не нужно – они сами охотно делятся моментами своей жизни и общаются с поклонниками.

Отдельное внимание стоит уделить публичным страничкам-сообществам. Они специализируются на отдельных тематиках, которые могут быть интересными пользователям, например, аккаунты со смешными видео, советами по похудению, мотивации, психологии и тайм-менеджменту, локальные сообщества, объединяющие жителей отдельных городов, студентов ВУЗов и сотрудников разных компаний. читайте в нашем материале

читайте в нашем материале.

И хоть популярность Инстаграма в последнее время просто зашкаливает, все равно остаются люди (и таких много), которые оттягивают момент регистрации на ресурсе, или вовсе не собираются этого делать. Это не значит, что им неинтересна сама соцсеть, а точнее, контент, который в ней публикуется. Авторизация открывают массу возможностей для пользователей: лайки, подписки, комментирование и другое. Но вот для того, чтобы просто следить за понравившейся страничкой, регистрироваться не обязательно. Достаточно просто переходить на интересный аккаунт, просматривать записи, некоторые ссылки добавлять в закладки и делать скриншоты. Конечно же, при условии, что профиль пользователя открыт и доступен для просмотра.

В этой статье мы детально разберем, как осуществить в Инстаграм поиск людей без регистрации, и что для этого нужно сделать.

Методика расчета

Удельная отопительная характеристика может быть расчетно-нормативной и фактической. Расчетно-нормативные данные определяются с помощью формул и таблиц. Фактические данные тоже можно рассчитать, но точных результатов можно добиться только при условии тепловизионного обследования здания.

Расчетные показатели определяются по формуле:

В данной формуле за F принята площадь здания. Остальные характеристики — это площадь стен, окон, пола, покрытий. R — сопротивление передаче соответствующих конструкций. За n берется коэффициент, изменяющийся в зависимости от расположения конструкции относительно улицы. Данная формула не является единственной. Тепловая характеристика может определяться по методикам саморегулируемых организаций, местным строительным нормам и т. п.

Расчет фактической характеристики определяется по формуле:

В этой формуле основными являются фактические данные:

  • расход топлива за год (Q)
  • продолжительность отопительного периода (z)
  • средняя температура воздуха внутри (tint) и снаружи (text) помещения
  • объем рассчитываемого сооружения

Это уравнение отличается простотой, поэтому используется очень часто. Тем не менее оно имеет существенный недостаток, снижающий точность расчетов. Этот недостаток заключается в том, что в формуле не учитывается разница температур в помещениях внутри рассчитываемого здания.

Для получения более точных данных можно использовать расчеты с определением расходов тепла:

  • По проектной документации.
  • По показателям теплопотерь через строительные конструкции.
  • По укрупненным показателям.

С этой целью может применяться формула Н. С. Ермолаева:

Ермолаев предложил для определения фактической удельной характеристики зданий и сооружений использовать данные о планировочных характеристиках здания (p — периметр, S — площадь, H — высота). Отношение площади остекленных окон к стеновым конструкциям передается коэффициентом g. Теплопередача окон, стен, полов, потолков также применяется в виде коэффициента.

Саморегулирующими организациями используются собственные методики. В них учитываются не только планировочные и архитектурные данные здания, но и год его постройки, а также поправочные коэффициенты температур уличного воздуха во время отопительного сезона. Также при определении фактических показателей нужно учитывать потери тепла в трубопроводах, проходящих по неотапливаемым помещениям, а также расходы на вентиляцию и кондиционирование. Эти коэффициенты берутся из специальных таблиц в СНиП.

Удельная отопительная характеристика здания – что это такое и как рассчитывается

Удельная отопительная характеристика здания является очень важным техническим параметром. Ее расчет необходим для выполнения проектно-строительных работ, кроме того, знание этого параметра не помешает и потребителю, так как он влияет на сумму оплаты за тепловую энергию. Ниже мы рассмотрим, что такое удельная отопительная характеристика и как она рассчитывается.

Данные тепловизионного обследования многоэтажного дома

Понятие удельной тепловой характеристики

Прежде чем ознакомиться с расчетами, определимся с основными терминами. Итак, удельная тепловая характеристика здания для отопления – это значение наибольшего теплового потока, который необходим для обогрева дома. При расчете данного параметра, дельту температур, т.е. разницу между комнатной и уличной температурой, принято брать за один градус.

По сути, данный показатель определяет энергоэффективность строения.

Средние параметры определяются нормативной документацией, такой как:

  • Строительные правила и рекомендации;
  • СНиПы и пр.

Любое отклонение от обозначенных норм в любую сторону, позволяет получить представление об энергетической эффективности отопительной системы. Расчет параметра осуществляется по СНиП и другим действующим методикам.

Утепление стен позволяет сократить энергозатраты на отопление

Расчетно-нормативные показатели

Расчетные показатели можно получить по следующей формуле:

qзд= +  +n1*  + n2), где:

qзд ,Вт/(м3оС)Количество теплоты, теряемой одним метром кубическим здания при разности температур в 1 градус.
F0, м2Отапливаемая площадь здания
Fст., Fок., Fпол., Fпок., м2Площадь стен (наружных), окон, пола, покрытия.
Rст., Rок., Rпол., Rпок.,Сопротивление теплопередачи поверхностей.
nКоэффициент, который изменяется в зависимости от расположения помещения относительно улицы.

Надо сказать, что данная формула не единственная. Удельные отопительные характеристики зданий могут определяться по местным строительным нормам, а также определенным методикам саморегулируемых организаций и пр.

Данные тепловизионного обследования частного дома

Фактические данные

Расчет фактической теплохарактеристики осуществляется по следующей формуле

В данной формуле основу составляют фактические параметры:

QРасход топлива в течение года
ZПродолжительность отопительного сезона
tintСредняя температура воздуха в помещении
textСредняя температура снаружи помещения
qфактФактическая удельная тепловая отопительная характеристика здания

Следует отметить, что данное уравнение отличается простотой, в результате чего его часто используют при расчетах. Однако, оно имеет серьезный недостаток, который влияет на точность получаемых расчетов. А именно – учитывает разницу температур в помещениях здания.

Чтобы получить своими руками более точные данные, можно применять расчеты с определением расхода тепла по:

  • Показателям потерь тепла через различные строительные конструкции;
  • Проектной документации.
  • Укрупненным показателям.

Схема теплопотерь

Саморегулирующие организации обычно используют собственные методики.

В них учитываются следующие параметры:

  • Архитектурные и планировочные данные;
  • Год постройки дома;
  • Поправочные коэффициенты температуры уличного воздуха в период отопительного сезона.

Кроме того, фактическая удельная отопительная характеристика жилых зданий должна определяться с учетом потерь тепла в трубопроводах, проходящих через «холодные» помещения, а также расходов на кондиционирование вентиляцию. Эти коэффициенты можно узнать в специальных таблиц СНиП.

Вот, пожалуй, и вся основная инструкция по определению удельного теплового параметра.

Вывод

Удельная отопительная характеристика зданий является важным параметром, который зависит от ряда факторов. Как мы выяснили, определить ее можно самостоятельно, что в дальнейшем позволит рассчитать энергозатраты на отопление в доме.

Из видео в этой статье можно почерпнуть некоторую дополнительную информацию по данной теме.

Расчет радиатора отопления по площади

Зависит он от материала, из которого они изготовлены. Чаще всего сегодня используются биметаллические, алюминиевые, стальные, значительно реже чугунные радиаторы. Каждый из них имеет свой показатель теплоотдачи (тепловой мощности). Биметаллические радиаторы при расстоянии между осями в 500 мм, в среднем имеют 180 — 190 Вт. Радиаторы из алюминия имеют практически такие же показатели.

Теплоотдача описанных радиаторов рассчитывается на одну секцию. Радиаторы стальные пластинчатые являются неразборными. Поэтому их теплоотдача определяется исходя из размера всего устройства. Например, тепловая мощность двухрядного радиатора шириной 1 100 мм и высотой 200 мм будет 1 010 Вт, а панельного радиатора из стали шириной 500 мм, а высотой 220 мм составит 1 644 Вт.

В расчет радиатора отопления по площади входят следующие базовые параметры:

— высота потолков (стандартная – 2,7 м),

— тепловая мощность (на кв. м – 100 Вт),

— одна внешняя стена.

Эти расчеты показывают, что на каждые 10 кв. м необходимо 1 000 Вт тепловой мощности. Этот результат делится на тепловую отдачу одной секции. Ответом является необходимое количество секций радиатора.

Для южных районов нашей страны, так же как и для северных, разработаны понижающие и повышающие коэффициенты.

Удельная тепловая характеристика

При одинаковом строительном объеме удельная тепловая характеристика здания возрастает с увеличением общей площади ее наружных ограждений. Отсюда следует, что при одинаковом строительном объеме удельная тепловая характеристика будет уменьшаться по мере приближения внешней формы здания к форме куба, который, как известно, имеет наименьшую ( после шара) наружную поверхность.  

Величина удельной тепловой характеристики является эксплуатационным показателем проектируемого здания — чем она выше, тем больше затраты на отопление. Поэтому исходя из экономически целесообразного уровня теплозащиты зданий следует не допускать увеличения удельных тепловых характеристик выше существующих норм.  

Еще большее влияние на затраты по отоплению зданий оказал непрерывный рост их удельных тепловых характеристик, являющийся следствием увеличения удельного веса за-иолнений световых проемов в суммарной площади наружных ограждающих конструкций, а также уменьшения сопротивлений теплопередаче этих конструкций и другими причинами. Во многих случаях эксплуатационные затраты на отопление этих зданий становятся равными стоимости системы отопления всего через 1 5 — 2 года.  

Величина удельной тепловой характеристики является эксплуатационным показателем проектируемого здания — чем она выше, тем больше затраты на отопление. Поэтому, исходя из экономически целесообразного уровня теплозащиты зданий, следует не допускать увеличения удельных тепловых характеристик выше существующих норм.  

Существуют две методики определения издержек на отопление зданий. Если решают задачи, не связанные непосредственно с теплотехническими свойствами ограждающих конструкций здания ( например, объемно-планировочные решения, включая вопросы блокирования зданий; определение технической возможности снабжения теплотой, вырабатываемой в действующей котельной, дополнительных зданий и др.) или эти свойства к моменту расчетов еще не определены, то Сот рассчитывают, исходя из удельной тепловой характеристики здания дул, равной теплопотерям 1 м здания ( Вт) при разности температур внутреннего и наружного воздуха, равной 1 С.  

Основная масса тепла и топлива расходуется в городском ( поселковом) хозяйстве на отопление и вентиляцию жилых и общественных зданий. Расход на эти нужды постоянно возрастает в связи с систематическим улучшением жилищных условий населения и развитием всех отраслей сферы обслуживания, следствием чего является увеличение удельной, на 1 жителя, отапливаемой кубатуры зданий различного назначения ( см. § 2 и прил. Существенное значение имеют и изменения удельных тепловых характеристик зданий.  

При одинаковом строительном объеме удельная тепловая характеристика здания возрастает с увеличением общей площади ее наружных ограждений. Отсюда следует, что при одинаковом строительном объеме удельная тепловая характеристика будет уменьшаться по мере приближения внешней формы здания к форме куба, который, как известно, имеет наименьшую ( после шара) наружную поверхность.  

Окна с помещенной между рамами свертывающейся шторой.| Фрагмент окна с поворотными подъемно-опускными жалюзи.  

Большое технико-экономическое значение имеет правильная оценка остекления здания. Необходимо учитывать, что с увеличением остекления наружных ограждений резко возрастает удельная тепловая характеристика здания, так как термическое сопротивление остекленных проемов почти в 3 раза меньше термического сопротивления наружной стены. В летние месяцы большое остекление является основной причиной перегрева помещений, что отрицательно сказывается на самочувствии человека и на его работоспособности.  

Расчет теплопотерь ограждениями зданий не сложен, но требует много времени. Поэтому нередко, например для разработки проектных заданий и для определения тепловой мощности котельных, пользуются методом приближенного определения теплопотерь по удельным тепловым характеристикам зданий.  

За внутреннюю температуру в формуле принимают такую, ко-которая характерна для большинства помещений здания. Эта величина показывает, насколько правильно запроектировано здание в теплотехническом отношении. Зависит она от принятых сопротивлений теплопередаче ограждений и, в частности, от площади остекления, а также объема и формы здания, причем с увеличением объема здания и уменьшением отношения его внешней поверхности к объему удельная тепловая характеристика уменьшается.  

Другие способы определения количества тепла

Добавим, что также существуют и другие способы, при помощи которых можно рассчитать объем тепла, которое поступает в систему отопления. В данном случае формула не только несколько отличается от приведенных ниже, но и имеет несколько вариаций.

Что же касается значений переменных, то они здесь те же, что и в предыдущем пункте данной статьи. На основании всего этого можно сделать уверенный вывод, что рассчитать тепло на отопление вполне можно своим силами. Однако при этом не стоит забывать о консультации со специализированными организациями, которые ответственны за обеспечение жилья теплом, так как их методы и принципы произведения расчетов могут отличаться, причем существенно, а процедура может состоять из другого комплекса мер.

Если же вы намереваетесь обустроить систему «теплого пола», то подготовьтесь к тому, что процесс расчета будет более сложным, поскольку здесь учитываются не только особенности контура отопления, но и характеристик электрической сети, которая, собственно, и будет подогревать пол. Более того, организации, которые занимаются установкой подобного рода оборудования, также будут другими.

Обратите внимание! Люди нередко сталкиваются с проблемой, когда калории следует переводить в киловатты, что объясняется использованием во многих специализированных пособиях единицы измерения, которая в международной системе называется «Си». >

В таких случаях необходимо помнить, что коэффициент, благодаря которому килокалории будут переведены в киловатты, равен 850

Если же говорить более простым языком, то один киловатт – это 850 килокалорий. Данный вариант расчета более просто, чем приведенные выше, так как определить значение в гигакалориях можно за несколько секунд, поскольку Гкал, как уже отмечалось ранее, это миллион калорий

В таких случаях необходимо помнить, что коэффициент, благодаря которому килокалории будут переведены в киловатты, равен 850. Если же говорить более простым языком, то один киловатт – это 850 килокалорий. Данный вариант расчета более просто, чем приведенные выше, так как определить значение в гигакалориях можно за несколько секунд, поскольку Гкал, как уже отмечалось ранее, это миллион калорий.

Дабы избежать возможных ошибок, не стоит забывать и о том, что практически все современные тепловые счетчики работают с некоторой погрешностью, пусть и в пределах допустимого. Такую погрешность также можно рассчитать собственноручно, для чего необходимо использовать следующую формулу:

Традиционно, теперь выясняем, что же обозначает каждое из этих переменных значений.

1. V1 – это расход рабочей жидкости в трубопроводе подачи.

2. V2 – аналогичный показатель, но уже в трубопроводе «обратки».

3. 100 – это число, посредством которого значение переводится в проценты.

4. Наконец, Е – это погрешность учетного устройства.

Согласно эксплуатационным требованиям и нормам, предельно допустимая погрешность не должна превышать 2 процентов, хотя в большинстве счетчиков она составляет где-то 1 процент.

В итоге отметим, что правильно произведенный расчет Гкал на отопление позволяет значительно сэкономить средства, затрачиваемые на обогрев помещения. На первый взгляд, процедура эта достаточно сложна, но – и вы в этом убедились лично – при наличии хорошей инструкции ничего трудного в ней нет.

На этом все. Также советуем посмотреть приведенный ниже тематический видеоматериал. Удачи в работе и, по традиции, теплых вам зим!

Формула расчета

Нормативы расхода тепловой энергии

Тепловые нагрузки рассчитываются с учетом мощности отопительного агрегата и тепловых потерь здания. Поэтому, чтобы определить мощность проектируемого котла, необходимо теплопотери здания умножить на повышающий коэффициент 1,2. Это своеобразный запас, равный 20%.

Для чего необходим такой коэффициент? С его помощью можно:

  • Прогнозировать падение давления газа в магистрали. Ведь зимой потребителей прибавляется, и каждый старается взять топлива больше, чем остальные.
  • Варьировать температурный режим внутри помещений дома.

Добавим, что тепловые потери не могут распределяться по всей конструкции здания равномерно. Разность показателей может быть достаточно большой. Вот некоторые примеры:

  • Через наружные стены покидает здание до 40% тепла.
  • Через полы — до 10%.
  • То же самое относится и к крыше.
  • Через вентиляционную систему — до 20%.
  • Через двери и окна — 10%.

Итак, с конструкцией здания разобрались и сделали одно очень важное заключение, что от архитектуры самого дома и места его расположения зависят потери тепла, которые необходимо компенсировать. Но многое также определяется и материалами стен, крыши и пола, а также наличием или отсутствием теплоизоляции. Это немаловажный фактор

Это немаловажный фактор.

К примеру, определим коэффициенты, снижающие теплопотери, зависящие от оконных конструкций:

  • Обычные деревянные окна с обычными стеклами. Для расчета тепловой энергии в данном случае используется коэффициент, равный 1,27. То есть через такой вид остекления происходит утечка тепловой энергии, равной 27% от общего показателя.
  • Если установлены пластиковые окна с двухкамерными стеклопакетами, то используется коэффициент 1,0.
  • Если установлены пластиковые окна из шестикамернного профиля и с трехкамерным стеклопакетом, то берется коэффициент 0,85.

Идем дальше, разбираясь с окнами. Существует определенная связь площади помещения и площади оконного остекления. Чем больше вторая позиция, тем выше тепловые потери здания. И здесь есть определенное соотношение:

  • Если площадь окон по отношению к площади пола имеет всего лишь 10%-ный показатель, то для расчета тепловой мощности системы отопления используется коэффициент 0,8.
  • Если соотношение располагается в диапазоне 10-19%, то применяется коэффициент 0,9.
  • При 20% — 1,0.
  • При 30% —2.
  • При 40% — 1,4.
  • При 50% — 1,5.

И это только окна. А есть еще влияние материалов, которые использовались в строительстве дома, на тепловые нагрузки. Расположим их в таблице, где стеновые материалы будут располагаться с уменьшением тепловых потерь, а значит, их коэффициент будет также снижаться:

Вид строительного материала

Как видите, разница от используемых материалов существенная. Поэтому еще на стадии проектирования дома необходимо точно определиться с тем, из какого материала он будет возводиться. Конечно, многие застройщики строят дом на основе бюджета, выделенного на строительство. Но при таких раскладках стоит пересмотреть его. Специалисты уверяют, что лучше вложиться первоначально, чтобы впоследствии пожинать плоды экономии от эксплуатации дома. Тем более что система отопления зимой составляет одну из главных статей расхода.

Размеры комнат и этажность здания

Схема системы отопления

Итак, продолжаем разбираться в коэффициентах, влияющих на формулу расчета тепла. Как влияют размеры помещения на тепловые нагрузки?

  • Если высота потолков в вашем доме не превышает 2,5 метра, то в расчете учитывается коэффициент 1,0.
  • При высоте 3 м уже берется 1,05. Незначительная разница, но она существенно влияет на тепловые потери, если общая площадь дома достаточно велика.
  • При 3,5 м — 1,1.
  • При 4,5 м —2.

А вот такой показатель, как этажность постройки, влияет на теплопотери помещения по-разному. Здесь необходимо учитывать не только количество этажей, но и место помещения, то есть, на каком этаже оно расположено. К примеру, если это комната на первом этаже, а сам дом имеет три-четыре этажа, то для расчета используется коэффициент 0,82.

При перемещении помещения в верхние этажи повышается и показатель теплопотерь. К тому же придется учитывать чердак — утеплен он или нет.

Как видите, чтобы точно подсчитать тепловые потери здания, необходимо определиться с различными факторами. И их все обязательно надо учитывать. Кстати, нами были рассмотрены не все факторы, снижающие или повышающие тепловые потери. Но сама формула расчета будет в основном зависеть от площади отапливаемого дома и от показателя, который называется удельным значением тепловых потерь. Кстати, в данной формуле оно стандартное и равно 100 Вт/м². Все остальные составляющие формулы — коэффициенты.

Точные расчеты тепловой нагрузки

Значение теплопроводности и сопротивление теплопередачи для строительных материалов

Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.

Что же такое сопротивление теплопередачи (R )? Это величина, обратная теплопроводности (λ ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d ). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:

Расчет по стенам и окнам

Сопротивление теплопередачи стен жилых зданий

Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.

В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:

  • Площадь стен – 280 м². В нее включены окна – 40 м² ;
  • Материал изготовления стен – полнотелый кирпич (λ=0.56 ). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи — R=0.36/0.56= 0,64 м²*С/Вт ;
  • Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт ;
  • Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
  • Сопротивление теплопередачи окон — 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).

Фактически тепловые потери через стены составят:

(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С

Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:

Расчет по вентиляции

Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:

(480*40*5)/24= 4000 кДж или 1,11 кВт/час

Суммируя все полученные показатели можно найти общие тепловые потери дом:

Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:

(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт

Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.

К полученным результатам нужно прибавить значение тепловых потерь через крышу и пол. Это можно сделать поправочным коэффициентом 1,2 – 6,07*1,2=7,3 кВт/ч.

Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.

Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.

Анатолий Коневецкий, Крым, Ялта

Анатолий Коневецкий, Крым, Ялта

Уважаемая Ольга! Извините,что обращаюсь к Вам еще раз. Что-то у меня по Вашим формулам получается немыслимая тепловая нагрузка: Кир=0,01*(2*9,8*21,6*(1-0,83)+12,25)=0,84 Qот=1,626*25600*0,37*((22-(-6))*1,84*0,000001=0,793 Гкал/час По укрупненной формуле, приведенной выше, получается всего 0,149 Гкал/час. Не могу понять, в чем дело? Разъясните пожалуйста! Извините за беспокойство. Анатолий.

Анатолий Коневецкий, Крым, Ялта

Энергетическое обследование проектируемых режимов работы системы теплоснабжения

При проектировании система теплоснабжения ЗАО «Термотрон-завод» была рассчитана на максимальные нагрузки.

Система проектировалась на 28 потребителей тепла. Особенность системы теплоснабжения в том, что часть потребителей тепла от выхода котельной до главного корпуса завода. Далее потребитель тепла — главный корпус завода, и затем остальная часть потребителей располагается за главным корпусом завода. То есть главный корпус завода является внутренним теплопотребителем и транзитом подачи тепла для последней группы потребителей тепловой нагрузки.

Котельная проектировалась на паровые котлы ДКВР 20-13 в количестве 3 штук, работающие на природном газе, и водогрейные котлы ПТВМ-50 в количестве 2 штук.

Одним из важнейших этапов проектирования тепловых сетей являлось определение расчетных тепловых нагрузок.

Расчетный расход тепла на отопление каждого помещения можно определить двумя способами:

— из уравнения теплового баланса помещения;

— по удельной отопительной характеристике здания.

Проектные значения тепловых нагрузок производился по укрупненным показателям, исходя из объема зданий по фактуре .

Расчетный расход тепла на отопление i-го производственного помещения , кВт, определяется по формуле:

, (1)

где: — коэффициент учета района строительства предприятия:

(2)

где — удельная отопительная характеристика здания, Вт/(м3.К);

— объем здания, м3;

— расчетная температура воздуха в рабочей зоне, ;

— расчетная температура наружного воздуха для расчета отопительной нагрузки, для города Брянска составляет -24.

Определение расчетного расхода тепла на отопление для помещений предприятия производилось по удельной отопительной нагрузке (табл. 1).

Таблица 1Расходы тепла на отопление для всех помещений предприятия

№ п/п

Наименование объекта

Объем здания, V, м3

Удельная отопительная характеристика q0, Вт/м3К

Коэффициент

е

Расход тепла на отопление

, кВт

1

Столовая

9894

0,33

1,07

146,58

2

Малярка НИИ

888

0,66

1,07

26,46

3

НИИ ТЭН

13608

0,33

1,07

201,81

4

Сборка эл. двигателей

7123

0,4

1,07

128,043

5

Модельный участок

105576

0,4

1,07

1897,8

6

Окрасочное отделение

15090

0,64

1,07

434,01

7

Гальванический отдел

21208

0,64

1,07

609,98

8

Заготовительный участок

28196

0,47

1,07

595,55

9

Термический участок

13075

0,47

1,07

276,17

10

Компрессорная

3861

0,50

1,07

86,76

11

Приточная вентиляция

60000

0,50

1,07

1348,2

12

Пристройка отдела кадров

100

0,43

1,07

1,93

13

Приточная вентиляция

240000

0,50

1,07

5392,8

14

Тарный цех

15552

0,50

1,07

349,45

15

Заводоуправление

3672

0,43

1,07

70,96

16

Учебный класс

180

0,43

1,07

3,48

17

Техотдел

200

0,43

1,07

3,86

18

Приточная вентиляция

30000

0,50

1,07

674,1

19

Заточный участок

2000

0,50

1,07

44,94

20

Гараж — Лада и ПЧ

1089

0,70

1,07

34,26

21

Литейка /Л.М.К./

90201

0,29

1,07

1175,55

22

Гараж НИИ

4608

0,65

1,07

134,60

23

Насосная

2625

0,50

1,07

58,98

24

НИИ

44380

0,35

1,07

698,053

25

Запад — Лада

360

0,60

1,07

9,707

26

ЧП «Кутепов»

538,5

0,69

1,07

16,69

27

Лесхозмаш

43154

0,34

1,07

659,37

28

АО К.П.Д. Строй

3700

0,47

1,07

78,15

ИТОГО ПО ЗАВОДУ:

Расчетный расход тепла на отопление ЗАО «Термотрон-завод» составляет:

Суммарные тепловыделения для всего предприятия составляют:

Расчетные теплопотери для завода определяются, как сумма расчетного расхода тепла на отопление всего предприятия и суммарных тепловыделений, и составляют:

Расчет годового расхода тепла на отопление

Так как предприятие ЗАО «Термотрон-завод» работало в 1 смену и с выходными днями, то годовой расход тепла на отопление определяется по формуле:

(3)

где: -средний расход тепла дежурного отопления за отопительный период, кВт (дежурное отопление обеспечивает температуру воздуха в помещении);

, — число рабочих и нерабочих часов за отопительный период соответственно. Число рабочих часов определяется перемножением продолжительности отопительного периода на коэффициент учета числа рабочих смен в сутках и числа рабочих дней в неделю.

Предприятие работает в одну смену с выходными.

(4)

Тогда

(5)

где: -средний расход тепла на отопление за отопительный период, определяемый по формуле:

. (6)

Вследствие не круглосуточной работы предприятия, рассчитывается нагрузка дежурного отопления для средней и расчетной температур наружного воздуха, по формуле:

; (7)

(8)

Тогда годовой расход тепла определяется:

График скорректированной отопительной нагрузки для средней и расчетной температур наружного воздуха:

; (9)

(10)

Определим температуру начала — конца отопительного периода

, (11)

Таким образом, принимаем температуру начала конца отопительного периода =8.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий