Как работает умягчение воды ионообменными смолами

Расчет соли для регенерации

Соль для смягчения воды в картриджи нельзя насыпать «на глаз». Объем на каждый цикл необходимо рассчитать, используя формулу:

P=(V*a)/1000

здесь:

V — объем смолы в литрах;

a — расход соли на 1 г-экв полезной ионообменной емкости смолы.

Если фильтрационная система является одноступенчатой, a= 160-210 г. Для двухступенчатого фильтра на первом этапе потребуется 130-160 г, на втором — 250-350 г.

Кислоты и щелочи

В отдельных ситуациях поваренной соли недостаточно для проведения процедуры в полном объеме. Например, при значительной минерализации воды в системе. В этом случае вместо хлорита натрия применяют растворы кислот, в том числе соляной. Но в домашних условиях лучше не экспериментировать. Работа с кислотами требует особых знаний и опыта.

Как провести регенерацию в фильтре «Гейзер»?

Оборудование производства концерна «Гейзер» пользуется особой популярностью в России. В магазинах представлены системы разных типов, в основном трехступенчатые. И их необходимо периодически восстанавливать для сохранения работоспособности на первоначальном уровне.

Алгоритм регенерации предполагает выполнение действий, перечисленных ниже:

  • перекрывается кран на трубе, ведущей к фильтру;
  • в системе стабилизируется давление. Для этого открывают обычный водопроводный кран;
  • готовится раствор. В литр воды добавляют 100 г соли;
  • в картридж заливают подготовленный раствор (2 литра). Чтобы не проливать, внизу можно поставить тазик. И нужно следить за тем, чтобы смола оставалась в корпусе;
  • картридж помещают в фильтр и наполняют полностью. Пользоваться системой ближайшие 8-10 часов нельзя;
  • раствор сливают и заливают новый в таком же объеме. После отстаивания его также сливают;
  • собирают фильтр, возвратив в него все снятые узлы.

Далее можно подключать воду, но первые литры лучше слить в канализацию.

Регенерация сменного модуля фильтров «Аквафор»

Здесь важно знать, что процедура обновления доступна не для всех моделей, а только для B510-04 и KH. Принцип такой же ка и в предыдущей установки

Как промыть солью элемент kh в системе «Кристалл»?

Алгоритм действий таков:

  • перекрывается вода, в системе выравнивается давление;
  • вынимается картридж. В моделях КН для этого нужно нажать кнопку;
  • если в комплект картриджа входит тройник, его собирают. Если же нет, нужно купить готовый;
  • с обычной бутылки из пластика срезают дно. Саму емкость подключают к тройнику;
  • готовят раствор соли. Потребуется 2-2,5 литра;
  • картридж с подключенным тройником и бутылкой помещают в таз или большую кастрюлю. Конец трубки переходника для регенерации выходит в канализацию;
  • в картридж заливают раствор соли. Когда вся жидкость вытечет, промывают чистой водой. Достаточно 2-х литров.

Как регенерировать модуль системы «Трио» для смягчения воды?

В системах «Трио» используются картриджи типа B510-04. Стандартно на возобновление их свойств требуется от 5 часов.

До начала работы готовится крепкий раствор соли — 300 г/литр воды. Сама процедура предполагает выполнение следующих действий:

  • перекрывается подача воды к фильтру. Также выравнивают давление в системе;
  • картридж извлекается из фильтра;
  • гранулы пересыпаются в стеклянную банку емкостью не менее 2 литров. Можно воспользоваться какой-либо пластиковой тарой;
  • сверху заливается раствор соли. Далее остается выждать не менее 5 часов. Содержимое банки периодически перемешивают;
  • раствор сливается. Гранулы заливают чистой водой и промывают.

На последнем этапе остается пересыпать смолу в картридж и поместить обратно в фильтр. Не будет лишней и промывка проточной водой в течение 10-15 минут.

Восстановление ионообменной смолы

Фильтрующие элементы с ионообменной смолой для индустриального либо домашнего умягчения воды требуют систематических замен картриджа. Экономнее регулярно досыпать регенерационную соль. Подобные меры не являются трудозатратными, но при этом их производительность не так высока. К тому же надолго так фильтр не реанимируешь – для эффективного смягчения потребуется полностью заменить наполнитель.

Просто засыпать гравийную подушку и фильтрующую загрузку не составляет особого труда, но выгрузка отработанного наполнителя – задача не из легких. Особенно если резервуар фильтрационного устройства выполнен из стеклопластика и не оснащен сливной системой. Отсоединив его от водопровода, и демонтировав управляющий клапан, потребуется приложить серьезные усилия, чтобы перенести массивный фильтр из дома на улицу.

Если это удалось, производят выгрузку. Для этого надо:

  1. Фильтрующий элемент положить на бок на ровную поверхность.
  2. К вводной части трубки для подъема воды хомутом присоединить укрепленный шланг для подачи через него воды под определенным напором.
  3. Промыть потоком воды взрыхленный наполнитель.
  4. После полного освобождения емкости из умягчителя либо фильтрующего элемента удалить водоподъемную трубку.
  5. После этого выполнить вторичную промывку резервуара и занести его обратно в дом.

Существуют организации, специализирующиеся на обслуживании водоочистных систем. Самостоятельный подбор фильтрующего элемента для воды тоже бывает проблематичным. При выборе дорогостоящего оборудования лучше прибегнуть к помощи специалиста.

Описание процесса умягчения воды

Удаление из воды кальция и магния можно описать уравнением:

Ме(HCO3)2 + 2NaR⇌МеR2 + 2NaHCO3.

Регенерация поваренной солью происходит следующим образом:

МеR2 + 2NaCl ⇌2 NaR+ МеCl2,

где R – обозначение радикала смолы (Ме-катиона двухвалентного металла).

Для ускорения процесса регенерации накопленных ионов кальция и магния, в систему направляют водный раствор поваренной соли (5–8% NaCl) со значительным превышением сверх необходимого стехиометрического её количества. В целях уменьшения удельного расхода соли при регенерации иногда практикуют первую половину расходного количества соли пропускать в виде 2 – 3%-го раствора, а вторую половину – в виде 6 – 7%-го раствора.

Скорости прохождения регенерирующих растворов обычно выдерживают на уровне 7 – 10 м/ч.

Расход поваренной соли Р для регенерации промышленных Na-катионитных фильтров на умягчение 1 м3 воды (г/м3) в расчете на 100% хлористый натрий определяют по нескольким формулам. Для одноступенчатого Na-катионирования или для фильтров 1 ступени:

Р11об – Жост).

Для Na-катионитных фильтров 2 ступени:

Р22ост – Жнорм).

Для H-, Na-катионитных фильтров:

Р3=180 (Жоб – Щ + а),

где У1, У2 – удельные расходы поваренной соли (г/г-экв), соответственно, выбирают по таблице в зависимости от применяемой технологии умягчения воды и регенерации катионита. Для одноступенчатого прямоточного процесса – 118 г/г-экв, второй ступени – 350 г/г-экв. Для прямоточного умягчения конденсатов – 350 г/г-экв. При одноступенчатом натрий-катионировании и ступенчато-противоположной системе регенерации 88 г/г-экв и противоточной технологии 90–150 г/г-экв; Жоб – среднегодовая общая жесткость исходной воды перед Na-катионитным фильтром 1-ой ступени, мг-экв/дм3; Жост – средняя за фильтроцикл остаточная жесткость воды, после первой ступени Na-катионирования, мг-экв/дм3; Жнорм – нормируемая жесткость умягченной воды, мг-экв/дм3; Щ – карбонатная щелочность исходной воды, мг-экв/дм3; а – заданная щелочность фильтрата, мг-экв/дм3.

Для эффективного взрыхления ионитов перед регенерацией необходимо предусмотреть свободное пространство в фильтре, достаточное для расширения слоя катионитов на 50–75%, слоя анионитов – на 80–100%. При этом иониты макропористой структуры требуют большей высоты расширения слоя в сравнении с ионитами гелевой структуры. В связи с этим начальная скорость потока взрыхляющей воды не должна превышать 5–7 м/ч.

Концентрированные водные растворы хлоридов СаСl2, МgСl2 и избыток раствора соли NаСl, оставшейся неиспользованной, затем удаляют промывочной водой из фильтра в дренаж.

При пропускании регенерационного раствора сверху-вниз, в нём нарастает концентрация вытесняемых и уменьшается концентрация регенерирующих ионов. Увеличение концентрации противоионов (при умягчении это Са2+, Mg2+), в регенерационном растворе NаСl подавляет и ослабляет замещение Са2+, Mg2+ в смоле на Nа+. Иначе говоря, это так называемый противоионный эффект тормозит реакцию регенерации. В итоге в нижних слоях катионита некоторое количество катионов жёсткости остаются незамещёнными Nа+. Для устранения этого явления можно продлить время регенерации, но это увеличивает удельный расход соли и повышает стоимость обработки воды. Поэтому ограничиваются однократным пропусканием раствора соли при жёсткости умягчённой воды до 0,20 мг-экв/дм3 или двукратным при жёсткости ниже 0,05 мг-экв/дм3.

Для каждого вида ионообменных смол есть свой предел, которого он может достигнуть, после чего фильтрующий слой перестаёт работать по назначению. Возможны два варианта того, что следует делать со смолой, использовавшей свою ионообменную емкость.

В том случае, когда порция смолы использовалась в виде сменного картриджа, что практикуется в ряде бытовых устройств, его просто заменяют на новый. Подобные устройства целесообразно применять для получения небольших объёмов очищенной воды, например, для разового приготовления пищи.

Недостатком подобных устройств является почти полная неизвестность того момента, когда картридж исчерпал свои умягчительные свойства. Поэтому или картридж меняют, хотя он ещё работоспособен, или употребляют не умягчённую воду.

В бытовых водоумягчительных устройствах с большим объемом загрузки ионообменными смолами применяется регенерация насыщенным раствором таблетированной поваренной соли из бака, который или расположен отдельно (колонная система, рис. 1), или является частью относительно компактной установки (кабинетная система, рис. 2).

Рис. 1. Колонная система водоумягчения

Рис. 2. Кабинетная система водоумягчеиня

Плюсы и минусы очистителей

Достоинства ионообменных фильтров таковы:

  1. Бесшумная работа. Это очень комфортный вариант для домашнего применения.
  2. Высокий уровень очищения воды из стока и из водопровода. Приборы эффективно устраняют тяжёлые металлы и радиоактивные элементы, а также блокируют бактерии, пестициды, элементы нефтяной продукции, ядовитые смеси.
  3. Лёгкость обслуживания и доступность картриджей. Их просто менять самостоятельно, не обращаясь к специалистам.
  4. Удержание минерального состава воды и её наполнение ионами с отрицательным зарядом. В результате чего преобразуются органические соли. А их организм усваивает намного легче.

Недостатки:

  1. Необходимо постоянно обновлять их наполнитель.
  2. Строгое следование критериям утилизации использованных смол.
  3. Некоторые модели довольно медленно очищают воду. Хотя это больше присуще старым приборам. В современных модификациях есть специальные ускорители процесса – катализатора обмена.
  4. Стоимость.

Свойства ионообменных смол

Ионообменные смолы (катиониты и аниониты) – это нерастворимые в воде высокомолекулярные полимерные органические соединения с кислотными или основными свойствами, чаще в виде сферических гранул, которые позволяют удалять из воды ионы кальция, магния и многих других металлов, а также других ионов, заменяя их в основном на ионы натрия Na+ или водорода H+, а также заменять кислотные остатки на ион хлора Cl– или ион гидроксила OH–.

Ионообменные смолы подразделяют на гетеропористые, макропористые и изопористые. Гетеропористые материалы характеризуются гетерогенным характером гелевидной структуры и небольшими размерами пор. Макропористые имеют губчатую структуру и поры свыше молекулярного размера. Изопористые – однородной структуры и полностью состоят из смолы, поэтому их обменная способность выше, чем у предыдущих смол.

Для специальных целей иониты выпускают в виде порошков, волокон, нитей, нетканых материалов, мембран и др.

В зависимости от содержащейся функциональной группы катиониты делятся на сильнокислотные, среднекислотные и слабокислотные. Сильнокислотные катиониты обменивают катионы в щелочной, нейтральной и кислой средах, для слабокислотных требуется только щелочная среда.

Мелкозернистый катионит, обладая более развитой поверхностью, имеет несколько большую обменную емкость, чем крупнозернистый. Однако с уменьшением зерен катионита гидравлическое сопротивление и расход электроэнергии на фильтрование воды увеличиваются. Оптимальные размеры зерен катионита, исходя из этих соображений, принимают в пределах 0,3…1,5 мм. Рекомендуется применять катиониты с коэффициентом неоднородности Кн не больше 2. Иониты, применяемые в развитых странах, характеризуются Кн близким к единице.

В воде все иониты набухают, увеличиваясь в объёме. Отношение объёмов одинаковых масс ионообменных смол в набухшем состоянии и в воздушно-сухом называется коэффициентом набухания. Его необходимо учитывать при первом наполнении сосуда фильтра ионообменной загрузкой и затем водой.

Катионит бывает в различных катионных формах. В основном, это натрий-форма (Na-форма) и водородная форма (Н-форма). В зависимости от этого катионит меняет удаляемые из воды ионы либо на натрий-ион, либо на водород-ион. Для удаления из воды катионов Са2+, Mg2+ в основном применяют класс полимерных смол различных катионитов с необходимыми свойствами для определённого процесса, а также их упорядоченные по высоте смеси. Катиониты в Н-форме используются для обессоливания воды и специальной водоподготовки.

После насыщения емкости катионита ионами кальция и магния, необходимо проводить его регенерацию, например, поваренной солью. Во время этого процесса идёт замена катионов солей жесткости на ионы Na+. После чего материал опять способен умягчать воду.

Также существует класс ионообменных полимерных соединений, которые, являясь основаниями, позволяют удалять из воды анионы кислот, заменяя их на анионы Cl– или ОН–. Они подразделяются на сильно-, средне- и слабоосновные аниониты. Для регенерации их подвергают действию щёлочи или соли соляной кислоты.

Нашли применение и так называемые амфотерные иониты или полиамфолиты. В разных ситуациях они могут вести себя как катиониты или как аниониты. Для регенерации амфотерных ионитов их промывают водой.

Катионит. Характеристика и применение

Катиониты – это высокомолекулярные нерастворимые вещества, состоящие из твердой основы в виде небольших гранул. Они бывают минеральные и органические, искусственного и естественного происхождения.

В искусственных содержится водород, который способен замещаться другими катионами – четвертичные амины.

Натрий катионитовый фильтр: принцип работы и применение

Состоит он из гелиевой смолы, состоящей из натриевых шариков. Таким наполнителем заполняется картридж, и он удерживает вредные минералы. Между натрием и солями происходит бурная реакция, способствующая образованию корки. Магний с кальцием прилипает к катиониту, словно магнит.

Работа делится на 4 этапа:

  1. Умягчающий этап.
  2. Перетряска катионовой засыпки.
  3. Регенерация.
  4. Этап отмывания.

Применяется на водоподготовительных установках электростанций, промышленных и отопительных котельных.

Особенности замены и регенерации катионитовых фильтров

Регенерация катионита осуществляется последовательным пропусканием раствора кислоты серной нарастающей концентрации: 1% раствор в течение 50 минут, 1,5% раствор – 25 минут и 3% раствор пропустить 20 минут со сбрасыванием использованного раствора в бак стоков.

Следующий этап – отмывка катионита от продуктов регенерации и избыточного содержания серной кислоты.

2.1 Умягчение воды кипячением

Кипячение (термический метод умягчения) – процесс нагревания воды, в результате которого устраняется временная жесткость, т.е. удаляются гидрокарбонаты кальция и магния, осаждающиеся в виде белой накипи. Таким образом, вода становится более мягкой.

Соли жесткости имеют свойство терять растворимость с ростом температуры. То есть, чем температура нагревания выше, тем быстрее образуются отложения. Чем дольше продолжается процесс кипячения, тем больше солей выпадет в осадок, и тем мягче будет полученная вода.

При использовании кипячения с целью понизить жесткость воды, учитываются несколько моментов.

Необходимо определить оптимальное положение крышки на емкости. Желательно, чтобы выделяющийся в процессе углекислый газ как можно быстрее улетучивался, поэтому рекомендуется не полностью закрывать крышку емкости, где происходит кипячение. При плотно закрытой крышке свободное улетучивание углекислого газа затруднено, и следовательно выпадение солей жесткости в осадок происходит медленнее. Если же емкость полностью открыта, вода быстро испаряется, и общее количество солей растет, ухудшая тем самым вкус воды.

Следующий момент, чем больше содержится в воде солей магния и кальция, тем быстрее в процессе нагревания будет образовываться накипь. Таким образом, необходимо знать уровень жесткости очищаемой воды. Например, если жесткость воды менее 4 мг-экв/л, то умягчать ее кипячением не имеет смысла. Реакция термического осаждения в этом случае будет слишком медленной, и испарится большое количество воды. Это в свою очередь негативно повлияет на вкус воды, так как концентрация солей будет неоптимальной.

Еще один параметр влияющий на время, необходимое, чтобы выпали в осадок все соли жесткости, это площадь поверхности, на которой будет происходить осаждение, т.е. площадь стенок и дна, контактирующих с водой. Чем площадь больше, тем эффективнее будет идти процесс, и тем меньше времени он займет. Причем, эффективность будет расти также с увеличение слоя накипи на поверхности емкости.

В бытовых, домашних условиях результат этого метода можно проверить либо просто на вкус, либо с помощью специального устройства.

С целью определения точного времени, необходимого на термическое умягчение воды, применяют прибор TDS-метр, или солемер. Устройство измеряет общее количество солей в воде (в том числе учитываются соли жесткости). Таким образом, если в процессе кипячения произошло выпадение осадка, то прибор покажет меньшее количество содержания солей. Вместе с тем, можно также определить, когда термическое воздействие уже не убирает временную жесткость, а наоборот повышает общее количество солей из-за испаряющейся воды.

Рекомендуется использовать солемер с  температурным компенсатором, тогда показания прибора по содержанию солей будут корректны при разных температурах нагреваемой воды.

Особенности упаковки и хранения

Согласно ГОСТу 20301-74 ионообменные смолы должны упаковываться в полиэтиленовые мешки, предварительно пройдя упаковку в пакеты из винилискожи. Допустимая масса одного запечатанного мешка может составлять 50 кг. Также эти вещества допустимо фасовать в пропиленовые бидоны или контейнеры.

Стоит отметить, что во время транспортировки или хранения, не допускается соседство катионитов ионообменной смолы с анионитами, а также любыми окислителями или растворителями. Хранить эту продукции можно только в сухих и хорошо проветриваемых помещениях, где температура воздуха не будет ниже +2°С. Складировать мешки с ионообменными смолами можно на расстоянии 1 метр от отопительных приборов. Срок хранения составляет 12 месяцев со дня производства.

Цена на ионообменную смолу в России достаточно отличается, но средняя стоимость такого очистителя составляет 120-150 рублей за литр.

Каждый производитель устанавливает свою цену. Например, одними из самых востребованных торговых марок считаются:

  • •    Рurolite,
  • •    Lewatit.

Цена 25 кг мешка ионообменной смолы Рurolite составляет 6500 рублей, 25 кг ионообменной смолы Lewatit будет стоить чуть дешевле – 4640 рублей.

Как выглядят ионообменные смолы для очистки воды

Применение ионообменных смол в фильтрующих системах частного жилого сектора давно считается необходимым условием для получения качественной питьевой воды. Пик популярности этого способа очистки приходится на конец ХХ века.

С виду, ионообменная смола – это скопление мелких шариков (до 1 мм в диаметре), которые производят из полимерных материалов.

Тот, кто никогда не сталкивался с этим материалом, с легкостью может перепутать смолу с рыбьей икрой. Пользу и его уникальные характеристики нельзя игнорировать. Использование ионообменных смол для умягчения воды позволяет задерживать ионы примесей металлов и солей жесткости. Но такой фильтр не просто накапливает в себе все эти вещества, а заменяет ионы вредных веществ на абсолютно безопасные. Эта процедура замены ионов и закрепила существующее название фильтрующей среды (ионообменные смолы).

В химии ионообменные смолы относят к ионитам (высокомолекулярное соединение, имеющее функциональные группы, которые, в свою очередь, способны вступать в реакцию обмена с ионами какой-либо жидкости). Отдельные группы ионитов способны также вступать в окислительные реакции, процессы восстановления и физической сорбции.

Статьи, рекомендуемые к прочтению:

По своей структуре ионообменные смолы бывают пористыми, гелевыми или промежуточными.

Смолы с гелевой структурой не содержат пор. Обмен ионами в такой структуре возможен лишь в тот момент, когда смола набухает и становится похожей (по консистенции) на гель.

Пористая структура получила свое название благодаря огромному количеству пор на поверхности смолы. Эти поры как раз и позволяют произвести ионный обмен.

В промежуточной структуре ионообменных смол соединены свойства как пористой, так и гелевой структуры.

Все эти разновидности смол имеют принципиальные различия. У гелевых – наибольшая обменная емкость, тогда как смолы с пористой структурой обладают высокой стойкостью к химическим и термическим воздействиям. Такая стойкость позволяет смолам с пористой структурой поглощать больше примесей независимо от температуры воды.

Кроме этого, ионообменные смолы для очистки воды разделяют по заряду ионов. При обмене катионов (положительно заряженных ионов) смолу называют катионитом. В случае обмена анионами (отрицательно заряженными ионами) – анионитами. На практике суть различия по этому признаку сводится к способности обмена ионов в водной среде с разным уровнем pH. У анионитов «рабочей» считается среда с рН от 1 до 6, в то время как у катионитов процессы протекают в среде с рН от 7 и более. Конечно же, пользователям необязательно разбираться в таких тонкостях работы фильтров. В выборе необходимого типа фильтрующего устройства вам должны помогать специалисты в этой области.

В большинстве случаев ионообменная смола, находящаяся в фильтрующих системах, содержит большое количество ионов солей хлора или натрия. В некоторых случаях такая смола состоит из смеси солей с другими элементами (натрий-водород, гидроксил-хлорид и др.).

В зависимости от параметров, ионообменные смолы для умягчения воды могут отличаться друг от друга. Одним из таких показателей является влажность. Оптимально, когда влажность сведена к минимуму. Поэтому производители стараются извлечь влагу из смолы еще до момента ее упаковки. Для этого используют специальные центрифуги.

Ионообменные смолы оценивают также по уровню их емкости. Эта характеристика показывает, сколько ионов в исходной среде приходится на единицу массы (объема смолы). Сравнивая смолы по этому признаку, выделяют три вида емкости: рабочую, объемную и весовую. Объемная, как и весовая, являются стандартными величинами, то есть их параметры определяют в лаборатории, а полученные данные записывают в характеристики готовых продуктов.

В отличие от двух предыдущих, рабочая емкость не подлежит измерениям, поскольку имеет много условностей (степень чистоты воды, толщина слоя смолы, сила потока воды и др.). Со временем ионы рабочей среды полностью заменяются ионами примесей, содержащихся в воде. В таком случае рабочая емкость подлежит восстановлению.

Читайте материал по теме: Обессоливание воды

2.2 Умягчение воды методом ионного обмена

Метод ионного обмена для умягчения воды – наиболее эффективен и широко применяется в промышленных масштабах, поскольку позволяет фильтровать значительное количество воды за короткие сроки. Основные показания для применения метода ионного обмена:

– содержание минеральных солей составляет 100-200 мг/л,

– высокий уровень жесткости.

Суть ионного обмена основана на свойстве ионообменных веществ или ионитов заменять положительные или отрицательные ионы в воде на соответствующее число ионов ионита. Бывает анионный и катионный обмен, а иониты соответственно могут быть анионами и катионами.

Иониты представляют собой неорганические либо высокомолекулярные органические  соединения, труднорастворимые в воде, в составе которых присутствует подвижный катион или анион. Катионы поглощают положительные ионы солей, а анионы – отрицательные. Количество содержащихся в ионите противоинов определяет его емкость (чем значение емкости больше, тем выше эффективность умягчения).

Рис. 2 – Технологическая схема установки умягчения воды

В промышленности в качестве ионитов используют синтетические ионообменные смолы, а также сульфированные угли.

Процесс умягчения воды в установке с последовательным катионированием и анионированием: вода, проходя через гранулы катионитового фильтра избавляется от ионов магния и кальция, после чего поступает в анионитовый фильтр и освобождается от анионов. Затем с помощью дегазатора из воды удаляются диоксид углерода и кислород. Далее очищенная вода направляется потребителям.

Поскольку реакции ионного обмена обратимы, возможно осуществлять регенерацию отработанной смолы путем обработки соответствующими кислотными или щелочными растворами.

Преимущества технологии ионного обмена:

– максимально высокий уровень очистки и умягчения воды по сравнению с любыми другими методами,

– универсальность – может применяться как для подготовки питьевой воды в небольших масштабах, так и для очистки сточных вод в промышленных условиях,

– снижает концентрацию не только солей магния и кальция, но и других элементов, отрицательно влияющих на качество воды и имеющих способность к ионному обмену,

– легкость использования, так как фильтрующая установка не включает в себя сложные устройства, и эксплуатация сводится к простой регулярной замене картриджей, содержащих ионообменную смолу.

К недостаткам можно отнести следующие факторы:

– использованные реагенты требуют утилизации,

– регулярные расходы на регенерацию ионообменной смолы (для средних показателей жесткости воды, это необходимо осуществлять каждые три месяца) и замену после полной выработки,

– маленькая скорость умягчения воды, так как ионообменный материал отличается низким показателем гидрофильности, и медленно обменивается ионами.

Тем не менее, все вышеперечисленные минусы практически сводятся к минимуму, благодаря современным разработкам фильтров, которые позволяют снижать расходование реагентов, а использование катализаторов значительно ускоряет процесс умягчения.

Конструкционно ионообменные фильтры на сегодняшний день производятся двух типов:

– стационарные фильтры относительно компактных размеров, укомплектованные сменным картриджем,

– крупногабаритные ионообменные колонны, включаемые в водопроводную схему, и обладающие автоматизированной регенерацией наполнителя.

Ионообменные колонны состоят из следующих комплектующих:

– герметичная рабочая емкость, наполненная ионообменной смолой, в виде баллона или бака.

– клапан для управления подачей воды, оснащенный электронным процессором,

– резервуар для восстанавливающего реагента.

Фильтрующие установки для применения в бытовых нуждах и в промышленных областях одинаковы по устройству и принципу работы и отличаются только габаритами рабочей емкости, а также составом применяемых реагентов.

Принцип действия ионообменного фильтра

Ионообменная очистка необходима при повышении минерализации до 100 мг солей на 1 л воды. Наивысшей производительностью характеризуются фильтры на основе водородных смол. Сталкиваясь с таким оборудованием, тяжелые металлы, токсические или радиоактивные элементы превращаются в безопасный водород, а из жидкости выходят соли кальция и магния.

Натриевые установки обменивают ионы металла на ионы натрия, что повышает содержание солей и запускает щелочные реакции. Это изменяет кислотно-щелочной баланс и оказывает негативное воздействие на человеческий организм. Но сами элементы безопасны для бытовой техники.

Рабочее вещество является неорганическим и пористым. Для эффективной работы очистительного оборудования нужно периодически очищать смолу. Частота таких процедур определяется интенсивностью эксплуатации системы. Чтобы обработать смоляной картридж, следует воспользоваться поваренной солью и кислотой лимона.

Заявленный производителем срок службы составляет не меньше 3 лет. С помощью ионообменного фильтра для очистки воды можно смягчить ее и вывести из состава ионы стронция, хрома, железа и прочих тяжелых примесей.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий