Как рассчитать естественную вентиляцию для помещения

Примеры расчетов объема воздухообмена

расчет объема воздухообмена

Далее приводится пример расчёта вентиляции исходя из кратности обмена. Для этого будет рассмотрен частный дом, имеющий такие помещения:

  • кухня — 19 кв. м;
  • гостиная — 41 кв. м;
  • санузел — 3 кв. м;
  • детская — 14 кв. м;
  • кабинет — 17 кв. м;
  • спальня — 22 кв. м;
  • ванная — 4 кв. м;
  • коридор — 6 кв. м.

В доме высота потолков составляет 3 м. Для расчёта нужно определить объём каждого помещения. При этом получим следующие значения:

  • кухня — 57 куб. м;
  • гостиная — 123 куб. м;
  • санузел — 9 куб. м;
  • детская — 42 куб. м;
  • кабинет — 51 куб. м;
  • спальня — 66 куб. м;
  • ванная — 12 куб. м;
  • коридор — 18 куб. м.

схема воздухообмена

Используя таблицу значений кратности из нормативного документа проводится расчёт в соответствии с приведённой выше формулой:

  • кухня — 57 = 57 (19 кв. м х 3) — округляем до 60;
  • гостиная — 3 х 123 — округляем до 370;
  • санузел — 9 = 9 (3 кв. м х 3) — округляем до 10;
  • детская — 1 х 42 — округляем до 45;
  • кабинет — 1 х 51 — округляем до 55;
  • спальня — 1 х 66 — округляем до 70;
  • ванная — 12 = 12 (4 кв. м х 3) — округляем до 15;
  • коридор — 18 = 18 (6 кв. м х 3) — округляем до 20;

Здесь при расчётах было учтено, что в нормативном документе отсутствует кратность для ванной, коридора, санузла и кухни. В этом случае площадь соответствующих помещений умножили на 3. После этого итоговую величину округлили в большую сторону до значения, кратного 5.

Теперь делают суммирование по помещениям, в которые первоначально поступает чистый воздух — это гостиная, кабинет, спальня, детская. После суммирования будет получено 370 + 55 + 70 + 45 = 540 куб. м. Столько воздуха должно поступать в дом благодаря использованию вентиляционной системы.

Теперь необходимо просуммировать значения по тем помещениям, где есть вытяжная вентиляция. Речь идёт о коридоре, кухне, ванной и санузле. Будет получено значение 20 + 60 + 15 + 10 = 105 куб. м. Это количество воздуха согласно расчётам должно выводится наружу.

Видно, что 105 < 540. Для нормальной работы вентиляционной системе необходимо усилить вытяжную вентиляцию. Для этого можно сделать дополнительные отверстия, увеличить диаметр вытяжных каналов или воспользоваться соответствующими электроприборами. Без дополнительных мер воздух будет застаиваться и нормы поступления свежего воздуха будут нарушены.

расчет воздухообмена

Пример расчёта по санитарным нормам выглядит следующим образом. Для примера речь пойдёт о квартире, в которой живёт семья из 4 человек. Здесь периодически бывают ещё 3 человека. Чтобы получить объём воздуха, который должен обновляться в течение каждого часа, необходимо учесть приведённые в этой статье нормы.

Для получения результата надо выполнить вычисления для каждого помещения. Далее приведена одна из возможных ситуаций:

  1. В спальне постоянно находятся 2 человека. Для них норма равна 2 х 60 = 120 куб. м.
  2. В кабинете работает 1. Для него потребуется 1 х 60 = 60 куб. м воздуха.
  3. В гостиной постоянно находится двое и ещё двое приходят туда время от времени. Для того, чтобы им хватала свежего воздуха, 2 х 20 + 2 х 60 = 160 куб. м.
  4. В детской находится 1 человек. Для него понадобится 1 х 60 = 60 куб. м воздуха.

Если просуммировать эти значения, то получится, что в течение каждого часа необходимо поступление 120 + 60 + 160 + 60 = 400 куб. м свежего воздуха.

Чтобы определить, как должна работать вытяжка, используют способ, изложенный для расчётов по кратности. Полученную цифру сравнивают в этом примере с 400 куб. м. Если она недостаточно велика, то необходимо сделать вытяжку более мощной.

Расчет системы вентиляции

Нормативный объем приточного воздуха

Обычно в жилых зданиях используются системы естественной вентиляции. В этом случае наружный воздух поступает внутрь помещений через фрамуги, форточки и специальные клапаны, а его удаление происходит с помощью вентиляционных каналов. Они могут быть приставными или располагаться во внутренних стенах. Возведение вентиляционных каналов во внешних ограждающих конструкциях не допускается из-за возможного образования конденсата на поверхности и последующего повреждения сооружений. Кроме того, охлаждение может снижать скорость воздухообмена.

Обеспечение естественного притока воздуха с помощью проветривания

Определение параметров вентиляционных труб для жилых зданий осуществляется на основании требований, регламентируемых СНиП, и другими нормативными документами. Кроме того, важен и показатель кратности обмена, который отражает эффективность функционирования вентиляционной системы. Согласно ему объем притока воздуха в помещение зависит от его назначения и составляет:

  • Для жилых зданий —3 м3/час на 1 м2 площади, независимо от числа людей, пребывающих на территории. По санитарным нормам для временно находящихся достаточно 20 м3/час, а для постоянных жителей — 60 м3/ час.
  • Для подсобных сооружений (гараж и т.п.) —не менее 180 м3/час.

Чтобы рассчитать диаметр труб для вентиляции, в качестве основы берут систему с естественным притоком воздуха, без установки специальных устройств. Самый простой вариант — воспользоваться соотношением площади помещения и сечения вентиляционного отверстия.

В жилых зданиях на 1 м2 необходимо 5,4 м2 сечения воздуховода, а в подсобных — около 17,6 м2. Однако менее 15 м2 его диаметр быть не может, иначе не обеспечивается циркуляция воздуха. Более точные данные получаются при помощи сложных расчетов.

Алгоритм определения диаметра вентиляционной трубы

На основании таблицы, приведенной в СНиП, производится определение параметров вентиляционной трубы на основании кратности воздухообмена. Она представляет собой величину, которая показывает, сколько раз в течение часа происходит замена воздуха в помещении, и зависит от его объема. Прежде чем определить диаметр трубы для вентиляции, выполняют следующее:

  1. Вычисляют объем каждого помещения, путем перемножения трех его размеров.
  2. Определяют необходимый объем воздуха согласно формуле (отдельно для каждого помещения)
  3. Обычно для большинства комнат нормируется или вытяжка, или приток. В некоторых помещениях нужно обеспечить и поступление воздуха, и его своевременное удаление.
  4. Все значения L нужно округлить в сторону увеличения таким образом, чтобы получить цифру, кратную 5.
  5. Для тех помещений, где необходим только приток или вытяжка, расчетный объем воздуха суммируют отдельно.
  6. Составляют баланс, в котором суммарные объема притока и вытяжки должны совпадать.
  7. Определив необходимый объем воздуха для всего жилья, по диаграмме находят диаметр трубы для вытяжки. При этом необходимо учитывать, что скорость в центральном воздуховоде не должна превышать 5 м/с, а в его ответвлениях — 3 м/с.

Диаграмма для определения диаметра вентиляционной трубы

Расчет канального нагревателя

электрический канальный нагреватель

Расчет калорифера вентиляции электрического типа производится так:

P=v * 0,36 * ∆T

здесь v — объем пропускаемого через калорифер воздуха в куб.м.\час, ∆T — разница между температурой воздуха снаружи и внутри, которую необходимо обеспечить калориферу.

Этот показатель варьирует в пределах 10 — 20, точная цифра устанавливается клиентом.

Расчет нагревателя для вентиляции начинается с вычисления фронтальной площади сечения:

Аф=R * p\3600 * Vp,

здесь R — объем расхода приточки, куб.м.\ч, p — плотность атмосферного воздуха, кг\куб.м, Vp — массовая скорость воздуха на участке.

Показатель массовой скорости определяется через фронтальную площадь теплообменников:

Vp=R * p\3600 * Aф.факт

Для дальнейшего расчета калорифера вентиляции определяем нужное для согрева потока воздуха количества теплоты:

Q=0,278 * W * c (Tп-Tу),

здесь W — расход теплого воздуха, кг\час, Тп — температура приточного воздуха, градусы Цельсия, Ту — температура уличного воздуха, градусы Цельсия, c — удельная теплоемкость воздуха, постоянная величина 1,005.

Так как в приточных системах вентиляторы размещаются перед теплообменником, расход теплого воздуха вычисляем так:

W=R * p

Рассчитывая калорифер вентиляции, следует определить поверхность нагрева:

Апн=1,2Q\k(Tс.т-Tс.в),

здесь k — коэффициент отдачи калорифером тепла, Tс.т — средняя температура теплоносителя, в градусах Цельсия, Tс.в — средняя температура приточки, 1,2 — коэффициент остывания.

Расчет скорости воздуха в воздуховоде по сечению: таблицы, формулы

При расчете и установке вентиляции большое внимание уделяется количеству свежего воздуха, поступающего по этим каналам. Для вычислений используются стандартные формулы, которые хорошо отражают зависимость между габаритами вытяжных устройств, скоростью движения и расходом воздуха. Некоторые нормы прописаны в СНиПах, но в большинстве своем имеют рекомендательный характер

Некоторые нормы прописаны в СНиПах, но в большинстве своем имеют рекомендательный характер.

Общие принципы расчета

Воздуховоды могут быть изготовлены из различных материалов (пластик, металл) и иметь разные формы (круглые, прямоугольные). СНиП регулирует только габариты вытяжных устройств, но не нормирует количество притяжного воздуха, т. к. его потребление в зависимости от типа и назначения помещения может сильно различаться. Этот параметр высчитывается по специальным формулам, которые подбираются отдельно.

Нормы установлены только для социальных объектов: больниц, школ, дошкольных учреждений. Они прописаны в СНиПах для таких зданий. При этом отсутствуют четкие правила по скорости движения воздуха в воздуховоде. Есть только рекомендуемые значения и нормы для принудительной и естественной вентиляции в зависимости от ее типа и назначения, их можно посмотреть в соответствующих СНиПах. Это отражено в таблице, приведенной ниже.

Скорость движения воздуха измеряется в м/с.

Рекомендуемые скорости воздуха

Дополнить данные в таблице можно следующим образом: при естественной вентиляции скорость движения воздуха не может превышать 2 м/с независимо от ее назначения, минимальная допустимая – 0,2 м/с. В противном случае обновление газовой смеси в помещении будет недостаточным. При принудительной вытяжке максимально допустимым считается значение 8 -11 м/с для магистральных воздуховодов. Превышать данные нормы не следует, т. к. это создаст слишком большое давление и сопротивление в системе.

Формулы для расчета

Для проведения всех необходимых вычислений необходимо обладать некоторыми данными. Чтобы вычислить скорость воздуха, понадобится следующая формула:

ϑ= L / 3600*F, где

ϑ – скорость потока воздуха в трубопроводе вентиляционного устройства, измеряется в м/с;

L – расход воздушных масс (данная величина измеряется в м3/ч) на том участке вытяжной шахты, для которого производится вычисление;

F – площадь поперечного сечения трубопровода, измеряется в м2.

По данной формуле и производится расчет скорости воздуха в воздуховоде, причем его фактическое значение.

Из этой же формулы можно вывести и все остальные недостающие данные. Например, чтобы рассчитать расход воздуха, формулу необходимо преобразовать следующим образом:

L = 3600 x F x ϑ.

В некоторых случаях подобные вычисления производить сложно или не хватает времени. В этом случае можно использовать специальный калькулятор. Встречается множество подобных программ в интернете. Для инженерных бюро лучше установить специальные калькуляторы, которые обладают большей точностью (вычитают толщину стенки трубы при расчете ее площади поперечного сечения, ставят большее количество знаков в число пи, высчитывают более точный расход воздуха и т. д.).

Знать скорость движения воздуха необходимо для того, чтобы вычислить не только объем подачи газовой смеси, но и для определения динамического давления на стенки каналов, потерь на трение и сопротивление и т.д.

Несколько полезных советов и замечаний

Как можно понять из формулы (или при проведении практических расчетов на калькуляторах), скорость воздуха увеличивается при уменьшении размеров трубы. Их этого факта можно извлечь ряд преимуществ:

  • не возникнет потерь или необходимости в прокладке дополнительного вентиляционного трубопровода для обеспечения необходимого расхода воздуха, если габариты помещения не позволяют провести каналы больших размеров;
  • можно прокладывать трубопроводы меньших размеров, что в большинстве случаев проще и удобней;
  • чем меньше диаметр канала, тем дешевле его стоимость, снизится цена и на доборные элементы (заслонки, клапаны);
  • меньший размер труб расширяет возможности монтажа, их можно расположить так, как нужно, практически не подстраиваясь под внешние стесняющие факторы.

Однако при прокладке воздуховодов меньшего диаметра необходимо помнить, что при повышении скорости воздуха повышается динамическое давление на стенки труб, увеличивается и сопротивление системы, соответственно потребуется более мощный вентилятор и дополнительные расходы. Поэтому до монтажа необходимо тщательно провести все расчеты, чтобы экономия не обернулась большими затратами или даже убытками, т.к. постройку, не соответствующую нормам СНиП могут не допустить до эксплуатации.

Расчёт воздухообмена по людям

Расчёт воздухообмена по людям сводится к подсчёту количества человек в помещении, определении расхода воздуха для каждого человека и суммировании этих расходов воздуха. Так, на каждого постоянно пребывающего человека требуется 60 м3/ч свежего воздуха, на посетителя — 20 м3/ч, на спортсмена — 80 м3/ч.

К примеру, в офисе 4 рабочих места и 2 стула для посетителей. Следовательно, расход приточного воздуха должен составить 4·60+2·20=280 м3/ч. Расход вытяжного воздуха обычно на 10-30% меньше приточного, но окончательно определяется на этапе расчёта воздушного баланса на объекте в целом.

Или другой пример — в танцевальном зале проводятся групповые занятия со средней численностью учеников 8 человек. Каков требуемый расход приточного воздуха? Данный расход следует определять исходя из 9 человек, так как помимо 8 учеников в зале присутствует преподаватель. Расход приточного воздуха для танцевального зала составит 9·80 = 720 м3/ч.

Нормативные показатели

При проектировании системы притока и очистки учитывают назначение здания, технические помещения отдельной квартиры, офиса или санузла. В жилье многоквартирного сектора принимается минимальный объем подаваемого воздуха 30 м3/чел.

Таблица воздухообменов по помещениям ГОСТ, СНиП

НаименованиеПоказатель кратности (м3/ч)
Жилая общая комната (зал)3
Кухня в квартире или хостеле6 – 8
Ванная, душ7 — 9
Туалет8 – 10
Бытовая прачечная7
Гардероб и кладовая1 – 1,5
Гараж, погреб4 – 8
Кинозал, театр, конференц-зал20 – 40 м3 на человека в час
Офис5 – 7
Ресторан8 – 10
Кафе, бар, бильярдный зал9 – 11
Универсам, торговый зал1,5 – 3
Цех авторемонтного предприятия6 – 8
Спортзал80 м3 на одного спортсмена или 20м3 на зрителя
Общественный санузел10 – 12 м3/ч или 100 м3 на 1 унитаз

Проводим расчет для ХП.

Последовательность расчета (см. рисунок 2):

1. На J-d диаграмму наносим (•) Н — с параметрами наружного воздуха:

tН„Б“ = -28°C;   JН„Б“ = -27,8 кДж/кг

и определяем недостающий параметр — абсолютную влажность или влагосодержание dН„Б“.

2. Принимаем температуру воздуха в помещении.

При наличии тепловых избытков лучше принять верхний предел

tВ = 22°С.

В этом случае стоимость вентиляции будет минимальной.

3. Определяем тепловое напряжение помещения

4. Исходя из величины теплового напряжения помещения, находим градиент повышения температуры по высоте

Градиент температуры воздуха по высоте помещений общественных и гражданских зданий

Тепловая напряженность помещения Qя /Vпомgrad t, °C/м
кДж/м3Вт/м3
Более 80Более 230,8 ÷ 1,5
40 ÷ 8010 ÷ 230,3 ÷ 1,2
Менее 40Менее 100 ÷ 0,5

и рассчитываем температуру воздуха, удаляемого из верхней зоны помещения

ty = tB + grad t(H-hр.з.), ºС

где: Н — высота помещения, м;hр.з. — высота рабочей зоны, м.

На J-d диаграмму наносим изотерму уходящего воздуха ty.

5. Принимаем, что температура приточного воздуха tП отличается от внутренней температуры воздуха в помещении tВ не более чем на 5°С.

tП = tВ — 5 = 22 — 5 = 17°С.

На J-d диаграмму наносим изотерму приточного воздуха .

6. Проводим линию постоянного влагосодержания — d = const из точки наружного воздуха – (•) Н, до изотермы .

Получаем точку — (•) К с параметрами воздуха после нагрева в калорифере.

Одновременно это будет и точка приточного воздуха — (•) П.

6. Определяем величину тепло-влажностного отношения

Для нашего примера примем величину тепло-влажностного отношения

На J-d диаграмме проводим линию тепло-влажностного отношения через (•)0 на шкале температур, а затем через точку приточного воздуха — (•) П проводим параллельную линию линии тепло-влажностного отношения до пересечения с изотермой внутреннего — tВ и уходящего — tУ воздуха. Получаем точки — (•) В и (•) У.

7. По формулам определяем воздухообмен по полному теплу

и по влагосодержанию

Полученные численные значения должны совпадать с точностью ±5%.

8. Полученные величины воздухообменов сравниваются с нормативным воздухообменом и принимается большая из величин.

Расчет диаметра воздуховодов

воздуховоды различного диаметра и формы сечения

Диаметры и сечения воздуховодов вентиляции рассчитывают после того, как составлена общая схема системы. При расчетах диаметров воздуховодов вентиляции учитывают следующие показатели:

  • Объем воздуха (приточного или вытяжного), который должен пройти через трубу за заданный промежуток времени, куб.м\ч;
  • Скорость движения воздуха. Если при расчетах вентиляционных труб скорость движения потока занижена, установят воздуховоды слишком большого сечения, что влечет дополнительные расходы. Завышенная скорость приводит к появлению вибраций, усилению аэродинамического гула и повышению мощности оборудования. Скорость движения на притоке 1,5 — 8 м\сек, она меняется в зависимости от участка;
  • Материал вентиляционной трубы. При расчете диаметра этот показатель влияет на сопротивление стенок. Например, наиболее высокое сопротивление оказывает черная сталь с шероховатыми стенками. Поэтому расчетный диаметр воздуховода вентиляции придется немного увеличить по сравнению с нормами для пластика или нержавейки.
Вид участкаСкорость потока, м\с
Магистральные трубопроводыОт 6 до 8
Боковые отводкиОт 4 до 5
Распределительные трубопроводыОт 1,5 до 2
Верхние приточкиОт 1 до 3
ВытяжкиОт 1,5 до 3

Таблица 1. Оптимальная скорость воздушного потока в трубах вентиляции.

Когда известна пропускная способность будущих воздуховодов, можно рассчитать сечение воздуховода вентиляции:

S=R\3600v,

здесь v — скорость движения воздушного потока, в м\с, R — расход воздуха, кубометры\ч.

Число 3600 — временной коэффициент.

Зная площадь сечения, можно рассчитать диаметр круглого воздуховода вентиляции:

здесь: D — диаметр вентиляционной трубы, м.

Если необходимо рассчитать диаметр вентиляционной трубы прямоугольного сечения, ее показатели подбирают исходя из полученной площади сечения круглой трубы.

Расчет площади элементов вентиляции

Расчет площади вентиляции необходим в том случае, когда элементы изготавливаются из листового металла и нужно определить количество и стоимость материала.

Площадь вентиляции рассчитывают электронные калькуляторы или специальные программы, их во множестве можно найти в интернете.

Мы приведем несколько табличных значений наиболее популярных элементов вентиляции.

Диаметр, ммДлина, м
11,522,5
1000,30,50,60,8
1250,40,60,81
1600,50,811,3
2000,60,91,31,6
2500,81,21,62
2800,91,31,82,2
31511,522,5

Таблица 2. Площадь прямых воздуховодов круглого сечения.

Значение площади в м. кв. на пересечении горизонтальной и вертикальной строчки.

Диаметр, ммУгол, град
1530456090
1000,040,050,060,060,08
1250,050,060,080,090,12
1600,070,090,110,130,18
2000,10,130,160,190,26
2500,130,180,230,280,39
2800,150,220,280,350,47
3150,180,260,340,420,59

Таблица 3. Расчет площади отводов и полуотводов круглого сечения.

4 Искусственный воздухообмен

Искусственный тип обмена воздуха является более совершенным и требует немалых финансовых и эксплуатационных затрат. В такой сети могут также располагаться ионизирующие, подогревающие и другие устройства.

Искусственный воздухообмен еще называют механическим. Он бывает приточным, вытяжным или комбинированным. Такая система имеет немало плюсов:

  • Собирает чистый воздух и обрабатывает его — подогревает, подсушивает или увлажняет.
  • Может передвигать воздушные потоки на большие расстояния.
  • Обеспечивает доставку воздуха в нужное место на предприятии.
  • Может очистить и удалить грязные потоки из любой точки цеха.
  • Не зависит от окружающей среды.

Чаще всего работают две системы — приточная и вытяжная. Однако бывают случаи, когда возможно применить лишь одну из них. Основная задача приточной — обеспечение рабочего места благоприятными условиями, в данном случае — чистым воздухом.

Используют такой тип воздухообмена на предприятиях, где преобладает высокая температура с малым количеством вредных выбросов. Свежий поток поступает по воздуховодам и доставляется на рабочие места путем работы распределительных насадок.

Системы, которые очищают загрязненный воздух, называют вытяжными. Чаще всего они работают в складских и бытовых помещениях.

Если существует необходимость создания надежной и активной сети, выполняют приточно-вытяжной воздухообмен. Чтобы воздух не попадал из загрязненных помещений в более или менее чистые, в системе создают давление.

При проектировании приточно-вытяжной системы необходимо рассчитать расход воздуха по формуле L отс = 3600 FW о, где F — общая сумма проемов в квадратных метрах, W о — средний коэффициент скорости притягивания воздуха. Эта характеристика зависит от вредности выбросов и вида необходимых операций.

Вытяжные устройства могут располагаться на любой высоте. Основная задача состоит в том, чтобы загрязненный воздух не менял свою натуральную траекторию перемещения. Загрязнения, которые тяжелее воздуха, всегда внизу, поэтому там тоже нужно размещать приборы для их забора.

В холодный сезон необходимо подогревать поступающий воздух. Самым экономичным вариантом будет рециркуляция, которая подразумевает подогрев части воздуха. При этом нужно выполнять некоторые условия:

  • Уличный воздух должен поступать в количестве не меньше 10%, а обратно необходимо выпускать поток с 30% загрязнений относительно допустимой отметки.
  • Категорически запрещено использовать рециркуляцию на предприятиях, где в воздухе присутствуют взрывоопасные вещества, болезнетворные микроорганизмы и другие опасные выбросы.

Очень часто приточную вентиляционную сеть соединяют с отопительной системой. За пределами цеха монтируют специальные воздухоприемники для чистого воздуха.

Шахты устанавливают над крышей и землей. Нужно лишь, чтобы возле приемников не было источника вредных выбросов. Минимальное расстояние от земли должно составлять 200 см в обычной зоне и 100 см в зеленой зоне.

Принцип работы приточной вентиляции прост: вентилятор осуществляет забор воздуха через калорифер, где затем нагревается. Далее воздушные массы увлажняются либо подсушиваются и поступают в цеха. Объем поступающего воздуха можно контролировать клапанами и заслонами.

Бывают два вида общеобменной приточно-вытяжной вентиляции — замкнутые и разомкнутые системы. Во втором случае это две независимые сети, одна из них подает воздушные массы, вторая удаляет отработанный.

Перечисленные схемы подводят к цехам, имеющим 1−2-й классы опасности.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий