Устройство электрической машины постоянного тока
Электрическая машина постоянного тока состоит из двух основных частей: неподвижной части ( индуктора) и вращающейся части ( якоря с барабанной обмоткой).
На рис. 1 изображена конструктивная схема машины постоянного тока
Рис.1
Индуктор состоит из станины 1 цилиндрической формы, изготовленной из ферромагнитного материала, и полюсов с обмоткой возбуждения 2, закрепленных на станине. Обмотка возбуждения создает основной магнитный поток. Магнитный поток может создаваться постоянными магнитами, укрепленными на станине. Якорь состоит из следующих элементов: сердечника 3, обмотки 4, уложенной в пазы сердечника, коллектора 5 для уменьшения потерь на вихревые точки набирается из изолированных друг от друга листов электротехнической стали.
Режим двигателя
Рассматриваемая простейшая машина может работать также двигателем, если обмотке ее якоря подвести постоянный ток от внешнего источника. При этом на проводники обмотки якоря будут действовать электромагнитные силы Fпр и возникнет электромагнитный момент Mэм. Величины Fпр и Mэм, как и для генератора, определяются равенствами (4) и (5). При достаточном значении Mэм якорь машины придет во вращение и будет развивать механическую мощность. Момент Mэм при этом является движущим и действует в направлении вращения.
Если мы желаем, чтобы при той же полярности полюсов направление вращения генератора (рисунок 2, а) и двигателя (рисунок 2, б) были одинаковы, то направление действия , а следовательно, и направление тока Iа у двигателя должны быть обратными по сравнению с генератором (рисунок 2, б).
В режиме двигателя коллектор превращает потребляемый из внешней цепи постоянный ток в переменный ток в обмотке якоря и работает, таким образом, в качестве инвертора тока.
Проводники обмотки якоря двигателя также вращаются в магнитном поле, и поэтому в обмотке якоря двигателя тоже индуктируется э. д. с. Eа, значение которой определяется равенством (1).
Направление этой э. д. с. в двигателе (рисунок 2, б) такое же, как и в генераторе (рисунок 2, а). Таким образом, в двигателе э. д. с. якоря Eа направлена против тока Iа и приложенного к зажимам якоря напряжения Uа. Поэтому э. д. с. якоря двигателя называется также противоэлектродвижущей силой.
Приложенное к якорю двигателя напряжение уравновешивается э. д. с. Eа и падением напряжения в обмотке якоря:
Uа = Eа + Iа × rа. | (6) |
Из сравнения равенств (3) и (6) видно, что в генераторе Uа < Eа , а в двигателе Uа > Eа.
Пуск синхронного двигателя
Особенностью этого вида электрических машин является то, что его нельзя просто подключить к сети и ожидать его запуска. Кроме того, что для работы СД нужен не только источник тока возбуждения, у него и достаточно сложная схема пуска.
Запуск происходит как у асинхронного двигателя, а для создания пускового момента кроме обмотки возбуждения на роторе размещают и дополнительную короткозамкнутую обмотку «беличью клетку». Её еще называют «демпфирующей» обмоткой, потому что она повышает устойчивость при резких перегрузках.
Ток возбуждения в обмотке ротора при пуске отсутствует, а когда он разгоняется до подсинхронной скорости (на 3-5% меньше синхронной), подаётся ток возбуждения, после чего он и ток статора совершает колебания, двигатель входит в синхронизм и выходит на рабочий режим.
Для ограничения пусковых токов мощных машин иногда уменьшают напряжение на зажимах обмоток статора, подключив последовательно автотрансформатор или резисторы.
Пока синхронная машина запускается в асинхронном режиме к обмотке возбуждения подключаются резисторы, сопротивление которых превышает сопротивление самой обмотки в 5 – 10 раз. Это нужно чтобы пульсирующий магнитный поток, возникающий под действием токов, наводимых в обмотке при пуске, не замедлял разгон, а также чтобы не повредить обмотки из-за индуцируемыми в ней ЭДС.
Видео. Генератор переменного тока.
Генераторы переменного тока способны восполнить электричество в доме при отказе стационарного устройства, а также применяются в любом месте, где необходима подача электроэнергии.
Для того чтобы обеспечить максимально комфортное существование человек разработал и изобрел огромное множество различных технологических устройств и сложных систем. Но одним из самых эффективных и действенных аппаратов, позволяющих использовать электричество стал генератор переменного тока. Ознакомиться с типами и видами УЗО .
Сегодня выделяют два основных вида конструкции:
- Устройства с неподвижной частью – статором и вращающимся элементом – магнитным полюсом. Элементы данного типа широко используются среди населения, потому как наличие неподвижной обмотки избавило пользователя от необходимости снимать лишнюю электрическую нагрузку.
- Электрическое устройство с якорем вращательного типа и неподвижным магнитным полюсом.
Выходит, что конструкция генератора сводится к наличию двух основных частей: подвижной и неподвижной, а также к элементам, которые служат связующим звеном между ними (щетки и провода).
Принцип работы
Принцип работы генератора переменного тока автомобиля:
- вращающая часть ротора или привода механизма номинально принимается за электрический магнит. Именно он и будет передавать создаваемое магнитное поле на «тело» статора. Это внешний элемент устройства, который состоит из катушек с подведенными к ним проводами.
- напряжение передается через кольца и коллекторные щитки. Кольца выполнены из меди и вращаются единовременно с ротором и коленвалом. В ходе движения к поверхности колец прижимаются щетки. Следовательно, ток будет передаваться от неподвижной части к подвижной части системы.
Технические характеристики
При покупке генератора переменного тока необходимо делать акцент на следующие технические характеристики:
- Электрическая мощность;
- Рабочее напряжение;
- Количество оборотов вращающейся части генератора;
- Коэффициент полезной мощности;
- Сила тока.
Эти величины являются основными техническими характеристиками переменного тока.
Виды
Сегодня на территории Российской Федерации реализуют продажу различных видов сертифицированных и не прошедших лицензирование генераторов переменного тока. Обзор бытовых галогенных ламп и как выбрать здесь: . Самыми популярными из этих устройств являются следующие:
Генераторы переменного тока
, которые еще часто называют альтернаторами, представляют собой электромеханические устройства, предназначенные для преобразования механической энергии в электрическую. Принцип работы множества из них основывается на вращении магнитного поля. Современные генераторы имеют довольно простую конструкцию и способны производить электроэнергию высокого напряжения.
Большой востребованностью в современной энергетике стали пользоваться электромеханические генераторы вращающегося типа.
Принцип их работы
основывается на возникновении электродвижущей силы в проводнике, который находится под воздействием переменного магнитного поля. Все генераторы состоят из двух основных частей: индуктора, в котором создается магнитное поле, и якоря, создающего электродвижущую силу. Неподвижный элемент генератора носит название статор, а вращающийся — ротор. В генераторах переменного тока ротор выполняет функции индуктора.
Конструктивно индуктор представляет собой электромагнитную систему, в состав которой входит 2 полюса или больше и обмотка возбуждения. Эту обмотку питает постоянный ток возбуждения. В некоторых случаях используются индукторы, основой которых являются постоянные магниты.
Во всем современном мире подавляющую часть электроэнергии получают с использованием синхронных альтернаторов.
(Альтернатор) Электрический генератор — это устройство, в котором не электрические виды энергии преобразуются в электрическую энергию.
Вращающийся индуктор в таких устройствах образует магнитное поле, индуцирующее в статоре (как правило, с трехфазной обмоткой) электродвижущую силу переменного типа. Численно частота такой силы совпадает с количеством оборотов ротора за определенный промежуток времени.
Типы синхронных машин
Существует несколько разновидностей подобных машин, это:
- Гидрогенератор – его ротор отличается наличием явновыращенных полюсов и используется при производстве электрической энергии, работает на низких оборотах.
- Турбогенератор – отличается неявнополюсной конструкцией генератора, работает при помощи турбин различного типа, скорость отличается большим количеством оборотов вала в минуту, может достигать до 6000 об/мин.
- Компенсатор – он вырабатывает реактивную мощность, не несет нагрузку, используется в целях повышения качества электрической энергии за счет улучшенного коэффициента мощности, служит для стабилизации напряжения.
- Асинхронизированная машина двойного питания – в ней производится подключение роторной и статорной обмоток от источника токов с разной частотой, происходит создание несинхронного режима работы. Отличается устойчивым режимом работы, служит преобразователем фазных токов, применяется для решения узкоспециализированных задач.
- Двухполюсный ударный генератор – работа заключается в использовании режима короткого замыкания, действует кратковременно в течение долей секунды, выполняет задачу для испытания аппаратуры высокого напряжения.
- Синхронные двигатели – подразделяются на ряд моделей, предназначенных для выполнения различных целей, это: шаговые модели, безредукторные, индукторные, гистерезисные, а также бесконтактные двигатели.
Трехфазный генератор: общее устройство, принцип действия, симметричная система фазных ЭДС
Структура трехфазной цепи
Трехфазными генераторами называются генераторы переменного тока, одновременно вырабатывающие несколько ЭДС одинаковой частоты, но с различными начальными фазами. Совокупность таких ЭДС называется трехфазной системой ЭДС.
Многофазными цепями называются цепи переменного тока, в которых действуют многофазные системы ЭДС. Любая из цепей многофазной системы, где действует одна ЭДС, называется фазой.
Трехфазные системы имеют ряд преимуществ перед другими системами (однофазными и многофазными):
– они позволяют легко получить вращающееся магнитное поле (на этом основан принцип работы разных двигателей переменного тока).
– трехфазные системы наиболее экономичны, имеют высокий КПД.
– конструкция трехфазных двигателей, генераторов и трансформаторов наиболее проста, что обеспечивает их высокую надежность.
– один трехфазный генератор позволяет получать два различных (по величине) напряжения.
Современные электрические системы, состоящие из генераторов, электростанций, трансформаторов, линий передачи электроэнергии и распределительных сетей, представляют собой трехфазные системы переменного тока.
Трехфазная система электрических цепей – совокупность электрических цепей, в которых действуют три синусоидальные ЭДС одной и той же частоты, сдвинутые друг относительно друга по фазе и создаваемые общим источником энергии. Каждая из цепей, входящих в трехфазную цепь, принято называть фазой.
Трехфазная цепь включает в себя источник (генератор) трехфазной ЭДС, проводники, потребители (приемники) трехфазной электрической энергии.
Рассмотрим устройство трехфазного генератора переменного тока
В пазах статора расположены три фазных обмотки (они условно представлены единственными витками). Начала и концы обмоток трехфазного генератора принято обозначать буквами и . Первыми буквами латинского алфавита обозначают начала обмоток, последними – концы. Началом обмотки называют зажим, через который ток поступает во внешнюю цепь при положительных его значениях.
Ротор генератора выполняется в виде вращающегося постоянного магнита или электромагнита, питаемого через скользящие контакты постоянным током.
При вращении ротора с помощью двигателя в обмотках статора возникают периодически изменяющиеся ЭДС, частота которых одинакова, но фазы в любой момент времени различны, так как различны положения обмоток в магнитном поле. ЭДС в неподвижных витках обмоток статора индуктируются в результате пересечения этих витков магнитным полем вращающегося ротора. Обмотки фаз генератора совершенно одинаковы и расположены симметрично по поверхности статора, поэтому ЭДС имеют одинаковые амплитудные значения, но сдвинутые друг относительно друга по фазе на угол 120 .
Если ЭДС фазы принять за исходную и считать ее начальную фазу равной нулю, то при вращении ротора с угловой скоростью против часовой стрелки выражения для мгновенных значений ЭДС можно записать следующим образом:
,
,
.
Переходя к комплексам действующих значений, получим:
,
Подобные системы ЭДС принято называть симметричными. Векторная диаграмма трехфазной симметричной системы ЭДС представляет собой симметричную трехлучевую звезду. Из векторной диаграммы следует, что
Если ЭДС фазы отстает от фазы , а ЭДС фазы отстает от ЭДС фазы , то такую последовательность фаз называют прямой. Обратную последовательность фаз можно получить, если изменить направление вращения ротора.
Если отдельные фазные обмотки генератора не соединены между собой электрически, то такую цепь называют несвязанной. По сути дела несвязанная трехфазная цепь состоит из трех независимых однофазных цепей. В противном случае трехфазная цепь называется связанной. Наибольшее распространение получили связанные трехфазные цепи, как наиболее экономичные, имеющие минимальное число проводов. При нормальном режиме работы трехфазных установок последовательность фаз принимается прямая.
Технические характеристики
Под основными техническими характеристиками генераторов можно понимать следующие величины. Это ЭДС генератора. Непосредственно с ЭДС любого генератора напрямую связана его полная электрическая мощность, которая ей прямопропорциональна.
Промежуточное реле — классификация, назначение, подключение и особенности срабатывания (Инструкция)
Подключение дифавтомата — схемы, правила монтажа и особенности установки своими руками. Пошаговая инструкция начинающего электрика!
Реле времени: как подключить своими руками? Для чего используется и обзор уровней автоматизации. Виды, маркировка и принцип работы устройства
Полная мощность возрастает при увеличении количества полюсов и частоты оборотов якоря. Полезная же мощность, передаваемая на подключённое внешнее устройство, равна произведению выходного тока на выходное напряжение.
Основная характеристика любого производящего что-либо устройства, в том числе и нашего генератора это КПД. Если генератор выключить, а потом включить, то его КПД будет уменьшаться, в связи с увеличением затрат энергии на нагрев обмотки. Различают электрический КПД и промышленный.
При таком подключении, причём желательно через автомат и вольтметр, добиваются равномерного распределения нагрузки между работающими генераторами. При увеличении потребления внешней нагрузки, в работу включается второй генератор, тем самым регулируя обороты первого и выравнивая напряжение.
При использовании генераторов со смешанным возбуждением происходит автоматическая регулировка характеристик работающих вместе генераторов, повышается стабильность работы. Это возможно из-за того, что в таких генераторах есть уравнительный провод, проходящий между отрицательными или положительными щётками. Именно эта шина и делает работу таких генераторов устойчивой.
- Реле контроля напряжения: советы по установке и подключению своими руками. Выбор и принцип работы для однофазной и трехфазной сети
Понижающий трансформатор: принцип работы, особенности выбора, подключение и установка своими руками. ТОП-10 идей + инструкция!
Кулачковый переключатель: конструкция устройства, характеристики и руководство по выбору. Схему подключения своими руками смотрите здесь!
Минусы коллекторных моторов
Сами по себе коллекторные моторы неплохо справляются со своей работой, но это лишь до того момента пока не возникает необходимость получить от них на выходе максимально высокие обороты. Все дело в тех самых щетках, о которых упоминалось выше. Так как они всегда находятся в плотном контакте с коллектором, то в результате высоких оборотов в месте их соприкосновения возникает трение, которое в дальнейшем вызовет скорый износ обоих и в последствии приведёт к потере эффективной мощности эл. двигателя. Это самый весомый минус таких моторов, который сводит на нет все его положительные качества.
Устройство простейшего генератора
Простейший генератор представляет собой обыкновенную прямоугольную рамку, которая размещена между магнитами с разными полюсами. Для снятия напряжения с вращающейся рамки используют токосъемные кольца.
В автомобилестроение используют электромагниты – катушки индуктивности или обмотки медного провода. При прохождении электрического тока через обмотку, последняя насыщается электромагнитными свойствами. Для возбуждения обмотки используется аккумуляторная батарея.
Устройство автомобильного генератора переменного тока
Автомобильный генератор состоит из корпуса с крышками, в которых имеются отверстия для вентиляции. Ротор устанавливается в подшипниках 2 и вращается в них. Привод ротора осуществляется путем ременной передачи (ремень одевается на шкив). Ротор выступает электромагнитом (обмоткой). Ток на обмотку поступает с помощью двух медных колец и графитных щеток, которые соединены с электронным регулятором. Электронный реле регулятор отвечает за напряжение на выходе, которое должно находиться в пределах 12 Вольт вне зависимости от частоты вращения шкива привода генератора. Реле регулятор может встраиваться в корпус, а может находиться отдельно.
Статор – представляет собой три медные обмотки, которые соединяются в треугольник. К точкам соединения обмоток подключается выпрямительный мост, который состоит из 6 полупроводниковых диодов, которые служат для преобразования переменного напряжения в постоянное.
Генера́тор (с латыни generator означает «производитель») — устройство, что вырабатывает электроэнергию, производит продукты или преобразует один вид энергии в другой.
Автомобильный генератор — устройство, которое преобразует механическую энергию вращения коленчатого вала двигателя автомобиля в электрическую.
Автомобильный генератор применяется для питания потребителей электроэнергии, таких как система зажигания, приборы освещения, бортовой компьютер автомобиля, системы диагностики, а также для зарядки аккумуляторной батареи (АКБ).
От надежности работы генератора зависит бесперебойность работы остальных систем автомобиля и других его компонентов. Мощность современного автомобильного генератора составляет 1 кВт.
Принцип работы автомобильного генератора
Первые автомобильные генераторы были генераторы постоянного тока. Они требовали много внимания к себе, что обуславливалось частым обслуживанием и контролем работы устройства.
Затем был придуманы диодные выпрямители, что значительно увеличило ресурс работы генератора и увеличило срок его работы. Генераторы с диодными выпрямителями тока стали называться генераторами переменного тока. На производство генератора переменного тока уходило меньше материалов, соответственно он стал легче и значительно меньше, а КПД вырос, обеспечивая более стабильный ток на выходе.
В современных иномарках используют синхронные трехфазные генераторы переменного тока, а в качестве выпрямителя – трехфазный выпрямитель Ларионова.
От поворота ключа до выдачи напряжения…
Во время поворота ключа замка зажигания в рабочее положение питание подается на обмотку возбуждения и генератор начинает отдавать ток в нагрузку. За управление током в обмотке возбуждения отвечает стабилизатор напряжения, который входит в щеточный узел генератора. Питание стабилизатора напряжения осуществляется от выпрямителя.
Ротор генератора приводится во вращение от коленчатого вала через шкив посредством клинового ремня. В обмотке возбуждения создается электромагнитное поле, которое индуцирует электрический ток в фазовых обмотках статора.
Выдаваемый ток – скачкообразный и зависит от частоты вращения коленчатого вала двигателя, поэтому для его стабилизации применяется стабилизатор напряжения.
Напряжение бортовой сети в работающей системе должно находится в пределах 13,8-14,2 В, что обеспечит нормальную подзарядку АКБ.
На крупногабаритных автомобилях используются автомобильные генераторы повышенной мощности 24 В.
Устройство синхронных машин, явнополюсные и неявнополюсные СМ.
Ответ:Конструктивная схема машины: В зависимости от расположения якоря синхронные машины выполняют с неподвижным или вращающимся якорем. Машины большой и средней мощности (рис. 285) выполняют с неподвижным якорем для удобства отвода электрической энергии от обмотки якоря или ее подвода к ней. Поскольку мощность возбуждения невелика, подвод постоянного тока к расположенной на роторе обмотке возбуждения с помощью двух колец не вызывает особых затруднений. В синхронных машинах с неподвижным якорем якорь 3 выполнен так же, как и статор асинхронной машины. На нем имеются пазы, в которых уложена трехфазная обмотка. Сердечник якоря запрессован в остов 2, для крепления машины на остове имеются лапы 6. Возможно также крепление с помощью фланца или другими способами. На валу ротора 4 установлен вентилятор 5, обеспечивающий охлаждение машины. Возбуждение синхронной машины осуществляется в данном случае от возбудителя 1. Конструкция ротора: В машинах с неподвижным якорем применяют две различные конструкции ротора: явнополюсную(рис. 286, а) и неявнополюсную (рис. 286,б). Явнополюсный (с явновыраженными полюсами) ротор обычно используют в машинах с четырьмя и большим числом полюсов. Обмотку возбуждения выполняют в этом случае в виде цилиндрических катушек 2 прямоугольного сечения, которые размещают на сердечниках 3 полюсов и укрепляют полюсными наконечниками 1.Ротор, сердечники полюсов и полюсные наконечники изготовляют из листовой стали.
Рис. 285. Общий вид синхронной машины с возбудителем.
Рис. 286. Расположение обмотки возбуждения на роторе синхронной явнополюсной (а) и неявнополюсной (б) машины.
Двухполюсные и четырехполюсные машины большой мощности, работающие при частоте вращения ротора 1500 и 3000 об/мин, выполняют, как правило, с неявнополюсным ротором. Применение в них явнополюсного ротора невозможно, так как не обеспечивается необходимая механическая прочность крепления полюсов и обмотки возбуждения. Обмотка возбуждения 2 в такой машине размещается в пазах сердечника 5 ротора, изготовленного из массивной стальной поковки, и укрепляется в них немагнитными металлическими клиньями. Лобовые части обмотки, на которые воздействуют значительные центробежные силы, крепят стальными массивными бандажами. Примерно 1/3 каждого полюсного деления ротора не имеет пазов; эти части образуют так называемые «большие зубцы» 4, через которые входит и выходит поток возбуждения. По своему назначению синхронные машины подразделяют на турбогенераторы, гидрогенераторы, дизель-генераторы и синхронные двигатели. Назначение машины в значительной степени определяет и ее конструкцию. Турбогенераторы, приводимые во вращение быстроходными паровыми или газовыми турбинами, выполняют неявнополюсными. Для получения стандартной частоты 50 Гц они должны иметь при двух полюсах частоту вращения 3000 об/мин, а при четырех полюсах—1500 об/мин. Гидрогенераторы приводятся во вращение тихоходными турбинами, частота вращения которых составляет несколько десятков или сотен оборотов в минуту, поэтому они выполняются с большим числом полюсов (16—96) и имеют явнополюсные роторы. Дизель-генераторы, работающие от двигателей внутреннего сгорания, и синхронные двигатели небольшой и средней мощности выполняют обычно явнополюсными, мощные же двигатели — неявнополюсными. Дизель-генераторы и синхронные двигатели выполняют, как правило, с горизонтальным расположением вала (рис. 287, а). В дизель-генераторе обычно имеется один подшипник; в качестве второй опоры ротора используется подшипник самого дизеля, вал которого жестко соединяется с валом ротора генератора. В синхронных машинах с явнополюсным ротором в полюсных наконечниках (рис. 287, 6) размещаются стержни беличьей клетки, выполненной из меди или латуни. С торцовых сторон ротора стержни соединяются с короткозамыкающими кольцами. В генераторах эту клетку называют демпферной обмоткой; она обеспечивает быстрое затухание колебаний ротора, возникающих при резких изменениях режима работы машины.
Теоретическая часть
Основной принцип работы альтернатора
Начнем с самого основного – переменный ток отличается от постоянного тем, что он с некоторой периодичностью меняет свое направление движения. Также он меняет и величину, о чем мы подробнее поговорим далее.
Спустя определенный промежуток времени, который мы назовем «Т» значения параметров тока повторяются, что на графике можно изобразить в виде синусоиды – волнистой линии, проходящей с одинаковой амплитудой через центральную линию.
Базовые принципы
Итак, назначение и устройство генераторов переменного тока, называемого раньше альтернатором, заключается в преобразовании кинетической энергии, то есть механической, в электрическую. Подавляющее большинство современных генераторов используют вращающееся магнитное поле.
- Работают такие устройства за счет электромагнитной индукции, когда при вращении в магнитном поле катушки из токопроводящего материала (обычно медная проволока), в ней возникает электродвижущая сила (ЭДС).
- Ток начинает образовываться в тот момент, когда проводники начинают пересекать магнитные линии силового поля.
Строение простейшего электромагнитного генератора
Причем пиковое значение ЭДС в проводнике достигается при прохождении им главных полюсов магнитного поля. В те моменты, когда они скользят вдоль силовых линий, индукция не возникает и ЭДС падает до нуля. Взгляните на любую схему из представленных – первое состояние будет наблюдаться, когда рамка примет вертикальное положение, а второе – когда горизонтальное.
Генератор переменного тока — как устроен
- Для лучшего понимания протекающих процессов нужно вспомнить правило правой руки, изучавшееся всеми в школе, но мало кем помнящееся. Суть его заключается в том, что если расположить правую руку так, чтобы силовые линии магнитного поля входили в нее со стороны ладони, большой палец, отведенный в сторону, укажет направление движения проводника, а остальные пальцы будут указывать на направление возникающей в нем ЭДС.
- Взгляните на схему выше, положение «а». В этот момент ЭДС в рамке равно нулю. Стрелочками показано направление ее движения – часть рамки А двигается в сторону северного полюса магнита, а Б – южного, достигнув которых ЭДС будет максимальным. Применяя описанное выше правило правой руки, мы видим, что ток начинает течь в части «Б» в нашу сторону, а в части «А» – от нас.
- Рамка вращается дальше и ток в цепи начинает падать, пока рамка снова не займет горизонтальное положение (в).
- Дальнейшее вращение приводит к тому, что ток начинает течь в обратном направлении, так как части рамки поменялись местами, если сравнивать с начальным положением.
Спустя половину оборота, все снова вернется в изначальное состояние, и цикл повторится снова. В итоге мы получили, что за время совершения полного оборота рамки, ток дважды возрастал до максимума и падал до нуля, и единожды менял свое направление относительно нчального движения.
Переменный ток
В его честь была названа частота тока
Принято считать, что длительность периода обращения равняется 1 секунде, а число периодов «Т» является частотой электрического тока. В стандартных электрических сетях России и Европы за одну секунду ток меняет свое направление 50 раз – 50 периодов в секунду.
Обозначают в электронике один такой период особой единицей, названной в честь немецкого физика Г. Герца. То есть в приведенном примере российских сетей частота тока составляет 50 герц.
Вообще, переменный ток нашел очень широкое применение в электронике благодаря тому, что: величину его напряжения очень просто изменять при помощи трансформаторов, не имеющих движущихся частей; его всегда можно преобразовать в постоянный ток; устройство таких генераторов намного надежнее и проще, чем для выработки постоянного тока.
Мощнейшие генераторы, установленные на Пушкинской ГЭС