Что называется падением напряжения на участке цепи

Приложенное напряжение и падение напряжения на участке цепи.

Напряжения, действующие в электрических цепях, условно можно разделить на два типа: — приложенное к цепи напряжение; — падение напряжения на участках цепи или на всей цепи. Приложенное напряжение это напряжение, подведенное к цепи (рис. 1.).

Рисунок 1. Приложенное напряжение и падение напряжения на участке цепи.

Источник напряжения подключен к цепи, поток электронов перемещается от минуса к плюсу источника напряжения. Если источник напряжения имеет значение напряжения 12 вольт (например, автомобильная аккумуляторная батарея), то приложенное напряжение будет иметь значение так же 12 вольт. При движении потока электронов по цепи они встречает, как мы знаем, сопротивление. Таким образом, когда электроны проходят через нагрузку (или другие элементы цепи), то они теряют энергию. Та энергия, которую электроны отдали в нагрузку, называется падением напряжения на участке цепи . В основном эта энергия выделяется на нагрузке в виде тепла. Энергия, которая отдается в нагрузку, равна энергии сообщаемой электронам источником напряжения. Если автомобильный аккумулятор напряжением 12 вольт подключить к автомобильной 12 вольтовой лампе, то приложенное к цепи напряжение будет равно 12 вольт, а падение напряжения на лампе так же будет 12 вольт (рис. 2.). Энергия в объеме 100% потребляется в цепи.

Рисунок 2. Пример приложенного напряжения в 12 В и падения напряжения на лампе.

Если к тому же 12-вольтовому автомобильному аккумулятору подключить две соединенные последовательно 6-вольтовые лампочки, то при том же приложенном напряжении в 12 В падение напряжение на лампочках будет по 6 вольт (рис. 3.). В этом случае все равно общее падение напряжение будет 12 вольт.

Рисунок 3.

В другом случае если взять две лампочки на разное напряжение, к примеру на 9 и 3 вольта, и включить их последовательно в цепь с источником напряжения 12 вольт, то соответственно на 9-ти вольтовой лампочке будет падать 9 вольт, а на 3-х вольтовой 3 вольта (рис. 4.). Как и всегда общее падение напряжения на лампочках равно 12 вольт.

Рисунок 4.

Комментарии

Ростислав 12.07.2016 22:03 Неспроста после прочтения материала не один раз задают вопрос про то что будет если к 12 вольтовому аккумулятору подсоединить ещё одну 12 вольтовую лампочку . Тему надо раскрывать с короткого замыкания Нет сопротивления в цепи и получается короткое замыкание а если сопротивление появляется то оно препятствует моментальному разряду того же аккумулятора .Cопротивление препятствует моментальному разряду источника .

Цитировать

Ростислав 05.07.2016 23:30 Если две лампочки по 12 вольт подсоединить к 12 вольтовому аккумулятору то какие будут изменения по сравнению с подключением одной 12 вольтовой лампочки?Дело в том что именно тема о падении напряжения самая трудная для понимания Можно выучить наизусть но при этом не понять происходящий процесс . Если короткое замыкание то падение напряжение будет равняться -0 .И как тут быть ? чем больше сопротивление тем большее падение напряжение или чем меньше сопротивление тем большее падение напряжения ? Немало тех кто перестаёт понимать электронику так и не осилив тему о падении напряжения .А ведь ещё и повышающая трансформация напряжения и увеличение тока при снижении напряжения при одинаковой мощности

Цитировать

Рома 06.02.2015 03:32 Цитирую Евгений Cherniy:

например мощность каждой лампочки 36 вт. когда мы подключаем одну лампу, то она потребляет эту мощность и ток равен 3 А. когда же добавляется ещё одна лампа, то общее сопротивление возрастает, ток уменьшается и обе лампочки светятся тусклее. примерно вполовину своей мощности. если же мощности различны, то лампа с большей мощностью будет гореть ярче, чем вторая лампа. Цитировать ренат 25.09.2014 09:45 Падение напряжения будет 6 вольт на каждой лампочке

Цитировать

Ivan 15.09.2014 06:56 Цитирую Евгений Cherniy:

Вторая лампочка гореть не будет Цитировать Евгений Cherniy 12.06.2014 19:37 Если к аккомулятору в 12 V подключить 2 лампочки по 12V — первая будет потреблять 100% напряжения. Что будет со второй лампой?

Цитировать

+1 Бука 22.06.2013 18:10 Я в 6 классе,сижу,пыт аюсь понять

Цитировать

Обновить список комментариев

Что такое падение напряжения на резисторе

Электрический ток, проходя по цепи, испытывает сопротивление, которое может изменяться под воздействием разнообразных условий внешней среды (экстремально низкие температуры или нагрев) и может зависеть от характеристик конкретного проводника. Например, чем тоньше проводник или длиннее – тем оно выше.

На значение его величины влияют следующие факторы:

  • сила тока;
  • длина проводящих частей;
  • напряжение;
  • материал проводниковых элементов;
  • нагрев (температура);
  • площадь поперечного сечения.

Резисторы можно разделить на постоянные, переменные и подстроечные. Главное их отличие друг от друга – возможность изменения показателя сопротивления. Чаще всего встречаются постоянные резисторы – данный показатель в них нельзя изменить, поэтому они и получили такое название. Переменные отличаются тем, что величину сопротивления в них можно настраивать. В подстроечном резисторе её также можно изменять, но отличие данной разновидности в том, что он не рассчитан на частое изменение параметра. Подстроечные резисторы выполняются в более компактном корпусе по сравнению с переменными.

Чтобы вычислить падение напряжения на резисторе, нужно помнить, что снижение нагрузки, приложенной ко всей цепи (то есть, напряжения, подключённого к контуру) может быть получено как для всего контура, так и для любого элемента цепи. Напряжение понижается за счёт сопротивления, которым обладают проводники.

Падение напряжения на резисторе зависит от силы проходящего тока и характеристик проводников. Температура и показатели тока также имеют значение. Например, напряжение, измеренное вольтметром на лампочке, подключённой к сети 220 В, будет немного ниже за счёт сопротивления, которым обладает лампочка.

Источники питания имеют разную величину напряжения. Это значение может превышать то, которое бывает необходимо на выходе. Чтобы нагрузка, которую требуется запитать, не сгорела, часто возникает необходимость в понижении вольтажа, в том числе с помощью резисторов.

Сравнительная таблица напряжений

Источник питанияНапряжение
NiCd аккумулятор1,2 В
Литий-железо-фосфатный аккумулятор3,3 В
Батарея типа «Крона»9 В
Автомобильный аккумулятор12 В
Аккумулятор для грузовых автомобилей24 В

В этом случае резистор должен уменьшить протекающий по цепи ток. При этом ток не превращается в тепло, происходит именно его ограничение. То есть при включении резистора в цепь ток упадёт – в этом и состоит работа резистора, при совершении которой элемент нагревается.

В общем случае падения напряжения можно рассчитать, используя простую формулу, связывающее показатели между собой.

Но в ряде случаев, например, при параллельном подключении сопротивлений, посчитать необходимую величину уже сложнее. В этом случае по специальной формуле потребуется привести сопротивление параллельных веток к одному числу:

R = R1*R2 / (R1+R2)

При необходимости также учитываются другие сопротивления, суммирующиеся с этим значением (например, сопротивление провода и источника питания).

Делитель на резисторах

Схема во многом похожа на предыдущие, но используются постоянные резисторы. Методика расчета такого делителя немного отличается от приведенных выше. Использоваться схема может как в цепях переменного, так и постоянного тока. Можно сказать, что она универсальная. С ее помощью можно собрать понижающий преобразователь напряжения. Расчет падения на каждом резисторе производится по следующим формулам:

  1. U(R1) = (R1 * U) / (R1 + R2).
  2. U(R2) = (R2 * U) / (R1 + R2).

Нужно отметить один нюанс: величина сопротивления нагрузки должна быть на 1-2 порядка меньше, чем у делительных резисторов. В противном случае точность расчета будет очень грубая.

Строительство

1N5822 Диод Шоттки в разрезанной упаковке. Полупроводник в центре образует барьер Шоттки против одного металлического электрода (обеспечивая выпрямляющее действие) и омический контакт с другим электродом.

Диоды с барьером Шоттки HP 5082-2800 для приложений общего назначения

Переход металл-полупроводник образуется между металлом и полупроводником, создавая барьер Шоттки (вместо перехода полупроводник-полупроводник, как в обычных диодах). Типичные металлы , используемые молибден, платина, хром или вольфрам, и некоторые силициды (например, палладий силицидов и платины силицида ), в то время как полупроводник, как правило , будет п-типа кремния. Металлическая сторона действует как анод , а полупроводник n-типа действует как катод диода; это означает, что обычный ток может течь от металлической стороны к полупроводниковой, но не в обратном направлении. Этот барьер Шоттки обеспечивает как очень быстрое переключение, так и низкое прямое падение напряжения.

Выбор комбинации металла и полупроводника определяет прямое напряжение диода. Полупроводники n- и p-типа могут создавать барьеры Шоттки. Однако р-тип обычно имеет гораздо более низкое прямое напряжение. Поскольку обратный ток утечки резко увеличивается с понижением прямого напряжения, он не может быть слишком низким, поэтому обычно используемый диапазон составляет около 0,5–0,7 В, а полупроводники p-типа используются лишь изредка. Силицид титана и другие тугоплавкие силициды, которые способны выдерживать температуры, необходимые для отжига истока / стока в процессах КМОП, обычно имеют слишком низкое прямое напряжение, чтобы их можно было использовать, поэтому в процессах с использованием этих силицидов обычно не используются диоды Шоттки.

При увеличении легирования полупроводника ширина обедненной области уменьшается. Ниже определенной ширины носители заряда могут туннелировать через обедненную область. При очень высоких уровнях легирования переход больше не ведет себя как выпрямитель и становится омическим контактом. Это можно использовать для одновременного формирования омических контактов и диодов, поскольку между силицидом и слаболегированной областью n-типа образуется диод, а между силицидом и сильно легированной областью n- или p-типа образуется омический контакт. . Слаболегированные области p-типа создают проблему, поскольку результирующий контакт имеет слишком высокое сопротивление для хорошего омического контакта, но слишком низкое прямое напряжение и слишком высокую обратную утечку, чтобы сделать хороший диод.

Поскольку края контакта Шоттки довольно острые, вокруг них возникает высокий градиент электрического поля, который ограничивает величину порога обратного напряжения пробоя. Используются различные стратегии, от защитных колец до перекрытий металлизации для распределения градиента поля. Защитные кольца занимают ценную площадь кристалла и используются в основном для больших высоковольтных диодов, в то время как перекрывающаяся металлизация используется в основном для низковольтных диодов меньшего размера.

Диоды Шоттки часто используются как фиксаторы антинасыщения в транзисторах Шоттки . Диоды Шоттки из силицида палладия (PdSi) превосходны благодаря более низкому прямому напряжению (которое должно быть ниже прямого напряжения перехода база-коллектор). Температурный коэффициент Шоттки ниже, чем коэффициент перехода B – C, что ограничивает использование PdSi при более высоких температурах.

Для силовых диодов Шоттки важными становятся паразитные сопротивления скрытого слоя n + и эпитаксиального слоя n-типа

Сопротивление эпитаксиального слоя более важно, чем для транзистора, поскольку ток должен проходить по всей его толщине. Однако он служит в качестве распределенного балластирующего резистора по всей площади перехода и, в обычных условиях, предотвращает локальный тепловой пробой.

По сравнению с силовыми p – n-диодами диоды Шоттки менее надежны. Переход находится в прямом контакте с термочувствительной металлизацией, поэтому диод Шоттки может рассеивать меньшую мощность, чем аналог pn аналогичного размера с глубоко заглубленным переходом до выхода из строя (особенно во время обратного пробоя). Относительное преимущество более низкого прямого напряжения диодов Шоттки уменьшается при более высоких прямых токах, когда в падении напряжения преобладает последовательное сопротивление.

Способы уменьшения потерь в электрических сетях

Пользователь сети не может повлиять на потери в ЛЭП, но может снизить падение напряжения на участке цепи, грамотно подключив ее элементы.

Медный кабель лучше соединять с медным, а алюминиевый — с алюминиевым. Количество соединений проводов, где материал жилы изменяется, лучше свести к минимуму, так как в таких местах не только рассеивается энергия, но и увеличивается тепловыделение, что при недостаточном уровне теплозоляции может быть пожароопасным. Учитывая показатели удельной проводимости и удельного сопротивления меди и алюминия, более эффективно в плане энергозатрат использовать медь.

Если это возможно, при планировании электрической цепи любые индуктивные элементы, такие как катушки (L), трансформаторы и электродвигатели, лучше подключать параллельно, так как согласно законам физики, общая индуктивность такой схемы снижается, а при последовательном подключении, наоборот, увеличивается.

Еще для сглаживания реактивной составляющей используют конденсаторные установки (или RC-фильтры в совокупности с резисторами).

В зависимости от принципа подключения конденсаторов и потребителя имеется несколько типов компенсации: личная, групповая и общая.

  1. При личной компенсации емкости присоединяют непосредственно к месту появления реактивной мощности, то есть собственный конденсатор — к асинхронному мотору, еще один — к газоразрядной лампе, еще один — к сварочному, еще один — для трансформатора и т.д. В этой точке приходящие кабели разгружаются от реактивных токов к отдельному пользователю.
  2. Групповая компенсация включает в себя присоединение одного или нескольких конденсаторов к нескольким элементам с большими индуктивными характеристиками. В данной ситуации регулярная одновременная деятельность нескольких потребителей связана с передачей суммарной реактивной энергии между нагрузками и конденсаторами. Линия, которая подводит электрическую энергию к группе нагрузок, разгрузится.
  3. Общая компенсация предусматривает вставку конденсаторов с регулятором в основном щите, или ГРЩ. Он производит оценку по факту текущего потребления реактивной мощности и быстро подсоединяет и отсоединяет нужное число конденсаторов. В результате берущаяся от сети общая мощность приводится к минимуму в согласии с моментальной величиной необходимой реактивной мощности.
  4. Все установки компенсации реактивной мощности включают в себя пару ветвей конденсаторов, пару ступеней, которые образуются специально для электрической сети в зависимости от потенциальных нагрузок. Типичные габариты ступеней: 5; 10; 20; 30; 50; 7,5; 12,5; 25 квар.

Для приобретения больших ступеней (100 и больше квар) соединяют параллельно небольшие. Нагрузки на сети уменьшаются, токи включения и их помехи снижаются. В сетях с множеством высоких гармоник сетевого напряжения конденсаторы защищают дросселями.

Автоматические компенсаторы обеспечивают сети, снабженной ими, такие преимущества:

  • уменьшают загрузку трансформаторов;
  • делают более простыми требования к сечению кабелей;
  • дают возможность загрузить электросети больше, чем можно без компенсации;
  • ликвидируют причины уменьшения напряжения сети, даже когда нагрузка подсоединена протяженными кабелями;
  • увеличивают КПД мобильных генераторов на топливе;
  • упрощают запуск электрических двигателей;
  • увеличивают косинус фи;
  • ликвидируют реактивную мощность из контуров;
  • защищают от перенапряжений;
  • совершенствуют регулировку характеристик сетей.

Онлайн калькулятор расчета потерь напряжения в кабеле

Кабельные линии большой протяженности отличаются значительным сопротивлением, которое вносит свои коррективы в работу сети. В зависимости от марки кабеля и других параметров будет отличаться и величина сопротивления. А величина потеть напряжения на кабельной линии прямо пропорциональна  этому сопротивлению.

При помощи онлайн калькулятора расчет потерь напряжения в кабеле  сводится к таким действиям:

  • Укажите длину кабеля в метрах и материал токоведущих жил в соответствующих окошках;
  • Сечение проводника в мм²;
  • Количество потребляемой электроэнергии в амперах или ваттах (при этом поставьте указатель напротив мощности или силы тока, в зависимости от того, какой параметр вам известен, и какую величину вы будете указывать);
  • Проставьте величину напряжения в сети;
  • Внесите коэффициент мощности cosφ;
  • Укажите температуру кабеля;

После того как вы внесли вышеперечисленных данные в поля калькулятора, нажмите кнопку «вычислить» и в соответствующих графах вы получите результат расчета — величину потерь напряжения в кабеле ΔU в %, сопротивление самого провода Rпр в Ом, реактивную мощность Qпр в ВАр и напряжение на нагрузке Uн.

Для вычисления этих величин вся система, включающая кабель и нагрузку, заменяется на эквивалентную, которую можно представить таким образом:

Схема замещения линии с нагрузкой

Как видите на рисунке, в зависимости от типа питания нагрузки (однофазная или трехфазная), сопротивление кабельной линии будет иметь последовательное или параллельное соединение по отношению к нагрузке. Расчет  в калькуляторе осуществляется по таким формулам:

Где,

  • ΔU – потеря напряжения;
  • UЛ – линейное напряжение;
  • UФ – фазное напряжение;
  • I – ток, протекающий в линии;
  • ZК – полное сопротивление кабельной линии;
  • RК – активное сопротивление кабельной линии;
  • XК – реактивное сопротивление кабельной линии.

Из них UЛ, UФ, I, — задаются на этапе введения данных. Для определения полного сопротивления ZК производится арифметическое сложение его активной  RК и реактивной XК составляющей. Активное и реактивное сопротивление определяется по формулам:

  • RК = ( ρ * l ) / S
  • RК – активное сопротивление кабельной линии, где
  • ρ – удельное сопротивление для соответствующего металла (медь или алюминий), но величина удельного сопротивления материала величина не постоянная и может изменяться в зависимости от температуры, из-за чего для приведения его к реальным условиям выполняется пересчет по отношению к температуре:
  • ρt = ρ20 *
  • здесь:
  • a – это коэффициент температурного изменения удельного сопротивления материала.
  • ρ20 – удельное сопротивление материала при температуре +20ºС.
  • t – реальная температура проводника, в данный момент времени.
  • l – длина кабельной линии (если нагрузка однофазная, а кабель имеет две жилы, то обе они включены последовательно и длину необходимо умножить на 2)
  • S – площадь сечения проводника.
  1. Зная активное сопротивление можно рассчитать реактивное XК, через коэффициент мощности по такой формуле:
  2. Реактивная мощность определяется по такой формуле: Q = S*sin φ, где
  3. Где S – это полная мощность, которую можно определить, как произведение тока в цепи на входное напряжение источника или как отношение активной мощности к коэффициенту мощности.
  4. Для вычисления величины напряжения, приходящейся на нагрузку, производятся такие расчеты: UН = U — ΔU, где
  • Где UН – величина напряжения, приложенная к нагрузке;
  • U – напряжение на вводе в кабельную линию
  • ΔU – падение напряжения в кабельной линии.

Онлайн расчет потерь напряжения в кабеле

Потери напряжения в кабеле являются большой проблемой в случае длинного пути от источника питания к потребителю, а также высокой потребляемой мощности последнего. Неверно подобранные материалы для электрической линии (проводки), например, провода с очень тонкими жилами, начинают греться из-за низкой проводимости для электрического тока. Предоставленный нами калькулятор позволяет выполнить расчет потерь напряжения в кабеле онлайн:

Также давайте разберемся, откуда берутся потери и почему. Токопроводящие жилы изготавливают из меди и алюминия они, хоть и являются отличными проводниками, но все равно обладают определенным удельным сопротивлением, которое является активным. На любом резистивном элементе падает определенное количество Вольт, согласно закону Ома:

U=I*Rпров

В постоянном токе при расчетах потерь напряжения в кабеле фигурирует только активное сопротивление R. В то же время при работе с переменным током, например, в сетях 0.4 кВ, к активной величине добавляется и реактивная часть — они составляют полное сопротивление Z (Xl и Xc). Роль реактивной мощности очень важна в расчетах, так как она составляет 20 и более процентов от потребляемой мощности.

Для чего нужен такой расчет? Всё очень просто: чем больше R проводки – тем больше потерь, и тем сильнее греются провода. Давайте разберемся как их рассчитать вручную, но проще это сделать с помощью онлайн калькулятора. Формула определения сопротивления проводника выглядит так:

R=p*L/S

где:

  • p — удельное сопротивление;
  • L — длина;
  • S — площадь поперечного сечения.

Отсюда следует, что оно зависит от длины и площади поперечного сечения. Чем длиннее и тоньше проводник — тем больше R, а для его уменьшения нужны жилы с большим поперечным сечением.

Тогда в простейшем случае потери равны падению напряжения на линии:

dU=I*Rпров

А с учетом полной мощности для переменного тока:

Но первая формула справедлива только для одной из токопроводящих жил, а электричество, как известно, нельзя передавать по одному проводу. Его передают как минимум по двум, в трехфазной сети — по четырем проводам.

Чтобы упростить себе калькуляцию и сохранить драгоценное время — пользуйтесь онлайн калькулятором для проведения расчетов потерь напряжения в кабеле. Для этого вы должны ввести параметры:

  • длину;
  • площадь поперечного сечения токопроводящих жил;
  • величину потребляемого тока или мощности;
  • количество фаз;
  • температуру проводника;
  • COS Ф.

В результате в пару кликов онлайн калькулятор предоставит вам следующие данные:

  • потери;
  • сопротивление кабеля;
  • реактивная мощность;
  • напряжение на нагрузке.

Базовые формулы определения напряжения

Для расчёта напряжения и сопротивления в цепи используются формулы или готовые онлайн калькуляторы.

Через силу тока и сопротивление

ЗначениеФормула
Базовый расчёт напряжения на участке цепиU=I/R, где I — сила тока в Амперах, а R — сопротивление в Омах
Определение напряжения в цепи переменного токаU=I/Z, где Z — сопротивление в Омах, измеренное по всей протяженности цепи

Закон Ома имеет исключения для применения:

  1. При прохождении токов высокой частоты происходит быстрое изменение электромагнитных полей. При расчёте высокочастотных цепей следует учитывать инерцию частиц, которые переносят заряд.
  2. При работе цепей в условиях низких температур (вблизи абсолютного нуля) у веществ может возникать свойство сверхпроводимости.
  3. Нагретый проходящими токами проводник является причиной возникновения переменного сопротивления.
  4. При нахождении под воздействием высокого напряжения проводников или диэлектриков.
  5. Во время процессов, проходящих в устройствах на основе полупроводников.
  6. При работе светодиодов.

Через мощность и силу тока

При известной мощности потребителей и силе тока напряжение высчитывается по формуле U=P/I, где P — мощность в Ваттах, а I — сила тока в Амперах.

При расчётах в цепях переменного тока используется формула иного вида: U=(P/I)*cosφ, где cosφ — коэффициент мощности, зависит от характера нагрузки.

При использовании приборов с активной нагрузкой (лампы накаливания, приборы с нагревательными спиралями и элементами) коэффициент приближается к единице. При расчётах учитывается возможность наличия реактивного компонента при работе устройств и значение cosφ считается равным 0,95. При использовании устройств с реактивной составляющей (электрические двигатели, трансформаторы) принято считать cosφ равным 0,8.

Для проверки расчётов рекомендуется сравнивать результат со стандартным напряжением, которое равняется 220 Вольт для однофазной сети и 380 Вольт — для трёхфазной.

Через работу и заряд

Методика расчёта используется в лабораторных задачах и на практике не применяется.

Формула имеет аналогичный закону Ома вид: U=A/q, где A — выполненная работа по перемещению заряда в Джоулях, а q — прошедший заряд, измеренный в Кулонах.

Расчёт сопротивления

При работе проводник создает препятствие течению электрического тока, которое называется сопротивлением. При электротехнических расчетах применяется понятие удельного сопротивления, которое измеряется в Ом*м.

ЗначениеФормула
Расчет сопротивления одного элементаR=U/I, где U — напряжение в Вольтах, а I — сила тока в Амперах
Расчет для однородного проводникаR=(ρ*l)/S, где ρ — значение удельного сопротивления (Ом*м, берётся из таблиц значений), l — длина отрезка проводника (метры), а S — площадь поперечного сечения (м2)

Последовательное подключение

При последовательном соединении выход элемента связан со входом следующего. Общее сопротивление находится при помощи расчётной формулы: R=R1+R2+…+Rn, где R=R1+R2+…+Rn — значения сопротивления элементов в Омах.

Параллельное подключение

Параллельным называется соединение, при котором оба вывода одного элемента цепи соединены с соответствующими контактами другого. Для параллельного подключения характерно одинаковое напряжение на элементах. Ток на каждом элементе будет пропорционален сопротивлению.

Общее сопротивление высчитывается по формуле: 1/R=1/R1+1/R2+…+1/Rn.

В реальных схемах электропроводки применяется смешанное соединение. Для расчёта сопротивления следует упростить схему, просуммировав сопротивления в каждой последовательной цепи. Затем схему уменьшают путём расчёта отдельных участков параллельного соединения.

Как найти падение напряжения и правильно рассчитать его потерю в кабеле

Одним из основных параметров, благодаря которому считается напряженность, является удельное сопротивление проводника. Для проводки от станции или щитка к помещению используются медные или алюминиевые провода. Их удельные сопротивления равны 0,0175 Ом*мм2/м для меди и 0,0280 Ом*мм2/м для алюминия.

Рассчитать падение электронапряжения для цепи постоянного тока в 12 вольт можно следующими формулами:

  • определение номинального тока, проходящего через проводник. I = P/U, где P – мощность, а U – номинальное электронапряжение;
  • определение сопротивления R=(2*ρ*L)/s, где ρ – удельное сопротивление проводника, s – сечение провода в миллиметрах квадратных, а L – длина линии в миллиметрах;
  • определение потери напряженности ΔU=(2*I*L)/(γ*s), где γ – это величина, которая равна обратному удельному сопротивлению;
  • определение требуемой площади сечения провода: s=(2*I*L)/(γ*ΔU).

Важно! Благодаря последней формуле можно рассчитать необходимую площадь сечения провода по нагрузке и произвести проверочный расчет потерь. Таблица значений индуктивных сопротивлений. Таблица значений индуктивных сопротивлений

Таблица значений индуктивных сопротивлений

В трехфазной сети

Для обеспечения оптимальной нагрузки в трехфазной сети каждая фаза должна быть нагружена равномерно. Для решения поставленной задачи подключение электромоторов следует выполнять к линейным проводникам, а светильников – между нейтральной линией и фазами.

Потеря электронапряжения в каждом проводе трехфазной линии с учетом индуктивного сопротивления проводов подсчитывается по формуле

Формула расчета

Первый член суммы – это активная, а второй – пассивная составляющие потери напряженности. Для удобства расчетов можно пользоваться специальными таблицами или онлайн-калькуляторами. Ниже приведен пример такой таблицы, где учтены потери напряжения в трехфазной ВЛ с алюминиевыми проводами электронапряжением 0,4 кВ.

Пример таблицы

Потери напряжения определены следующей формулой:

ΔU = ΔUтабл * Ма;

Здесь ΔU—потеря напряжения, ΔUтабл — значение относительных потерь, % на 1 кВт·км, Ма — произведение передаваемой мощности Р (кВт) на длину линии, кВт·км.

Однолинейная схема линии трехфазного тока

На участке цепи

Для того, чтобы провести замер потери напряжения на участке цепи, следует:

  • Произвести замер в начале цепи.
  • Выполнить замер напряжения на самом удаленном участке.
  • Высчитать разницу и сравнить с нормативным значением. При большом падении рекомендуется провести проверку состояния проводки и заменить провода на изделия с меньшим сечением и сопротивлением.

Важно! В сетях с напряжением до 220 в потери можно определить при помощи обычного вольтметра или мультиметра. Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз). Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз)

Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз).

Советуем изучить — Влияние изменения частоты на работу электрических систем

Образец калькулятора для вычисления потерь

Таким образом, вычислить и посчитать потери напряжения можно с помощью простых формул, которые для удобства уже собраны в таблицы и онлайн-калькуляторы, позволяющие автоматически вычислять величину по заданным параметрам.

Проведение сложных расчетов

Для более детального и достоверного расчета потерь напряжения на линии нужно принимать во внимание реактивное и активное сопротивление, которое вместе образует комплексное сопротивление, и мощность. Для проведения расчетов падения напряжения в кабеле используют формулу:. Для проведения расчетов падения напряжения в кабеле используют формулу:

Для проведения расчетов падения напряжения в кабеле используют формулу:

∆U = (P*r0+Q*x0)*L/ U ном

В этой формуле указаны следующие величины:

  • P, Q — активная, реактивная мощность.
  • r0, x0 — активное, реактивное сопротивление.
  • U ном — номинальное напряжение.

Чтобы обеспечить оптимальную нагрузку по трехфазных линиям передач, необходимо нагружать их равномерно. Для этого силовые электродвигатели целесообразно подключать к линейным проводам, а питание на осветительные приборы — между фазами и нейтральной линией.

Есть три варианта подключения нагрузки:

  • от электрощита в конец линии;
  • от электрощита с равномерным распределением по длине кабеля;
  • от электрощита к двум совмещенным линиям с равномерным распределением нагрузки.

Пример расчета потерь напряжения: суммарная потребляемая мощность всех энергозависимых установок в доме, квартире составляет 3,5 кВт — среднее значение при небольшом количестве мощных электроприборов. Если все нагрузки активные (все приборы включены в сеть), cosφ = 1 (угол между вектором силы тока и вектором напряжения). Используя формулу I = P/(Ucosφ), получают силу тока I = 3,5*1000/220 = 15,9 А.

Советуем изучить — Источники питания в системах электроснабжения

Дальнейшие расчеты: если использовать медный кабель сечением 1,5 кв. мм, удельное сопротивление 0,0175 Ом*мм2, а длина двухжильного кабеля для разводки равна 30 метров.

По формуле потери напряжения составляют:

∆U = I*R/U*100 %, где сила тока равна 15,9 А, сопротивление составляет 2 (две жилы)*0,0175*30/1,5 = 0,7 Ом. Тогда ∆U = 15,9*0,7/220*100% = 5,06 %.

Полученное значение незначительно превышает рекомендуемое нормативными документами падение в пять процентов. В принципе, можно оставить схему такого подключения, но если на основные величины формулы повлияет неучтенный фактор, потери будут превышать допустимое значение.

Что это значит для конечного потребителя? Оплата за использованную электроэнергию, поступающую к распределительному щиту с полной мощностью при фактическом потреблении электроэнергии более низкого напряжения.

Поделитесь в социальных сетях:FacebookTwittervKontakte
Напишите комментарий