Как и где ставится расширительный бак
Итак, мы собираемся своими руками спроектировать и собрать систему отопления. Если она еще и заработает — нашей радости не будет предела. Есть ли инструкция по установке расширительного бачка?
Открытая система
В этом случае ответ подскажет простой здравый смысл.
Открытая система отопления представляет собой, в сущности, один большой сосуд сложной формы со специфичными конвекционными потоками в нем.
Установка котла и отопительных приборов в нем, как и монтаж трубопроводов, должны обеспечить две вещи:
- Быстрый подъем нагретой котлом воды в верхнюю точку отопительной системы и ее слив через отопительные приборы самотеком;
- Беспрепятственное перемещение пузырьков воздуха туда, куда они устремятся в любом сосуде с любой жидкостью. Вверх.
- Установка расширительного бачка отопления в открытой системе всегда выполняется в ее верхней точке . Чаще всего — вверху разгонного коллектора однотрубной системы. В случае домов верхнего розлива (хоть вам и едва ли придется их проектировать) — в верхней точке розлива на чердаке.
- Сам бачок для открытой системы не нуждается в запорной арматуре, резиновой мембране и даже в крышке (разве что для защиты от мусора) . Это простой открытый сверху водяной бак, в который всегда можно долить ведро воды взамен испарившейся. Цена такого изделия равна стоимости нескольких сварочных электродов и квадратного метра стального листа толщиной 3-4 миллиметра.
Так выглядит расширительный бак для открытой системы отопления. При желании в люк в нем можно вывести водоразборный кран от водопровода. Но куда чаще он по мере испарения воды доливается обычным ведром.
Закрытая система
Здесь и к выбору бака, и к его монтажу придется отнестись достаточно серьезно.
Давайте соберем и систематизируем основную информацию, доступную на тематических ресурсах.
Монтаж расширительного бака системы отопления оптимален в том месте, где течение воды наиболее близко к ламинарному, где в отопительной системе минимум завихрений. Самое очевидно решение — расположить его на прямом участке розлива перед циркуляционным насосом. При этом высота относительно пола или котла значения не имеет: назначение бачка — компенсировать тепловое расширение и гасить гидроудары, а воздух мы прекрасно стравим через воздушные краны.
Типичная схема установки бачка. Его расположение в однотрубной системе будет таким же — перед насосом по ходу воды.
- Баки в заводской комплектации иногда снабжаются предохранительным клапаном, сбрасывающим избыточное давление. Однако лучше перестраховаться и убедиться, что в вашем изделии он есть. Если нет — докупить и смонтировать рядом с баком.
- Электрические и газовые котлы с электронными термостатами зачастую поставляются с встроенными циркуляционным насосом и расширительным баком отопления. Прежде, чем отправляться за покупками — убедитесь, что они вам нужны.
- Принципиальное отличие мембранных расширительных баков от тех, что используются в открытых системах — их ориентация в пространстве. В идеале теплоноситель должен поступать в бак сверху. Эта тонкость монтажа призвана полностью удалить воздух из того отсека бака, который предназначен для жидкости.
- Минимальный объем расширительного бачка для водяной системы отопления берется примерно равным 1/10 объема теплоносителя в системе. Больше — допустимо. Меньше — опасно. Объем воды в отопительной системе можно грубо рассчитать, отталкиваясь от тепловой мощности котла: как правило, берется 15 литров теплоносителя на киловатт.
- Манометр, смонтированный рядом с расширительным баком и подпитывающим вентилем (соединяющим отопление с водопроводом), может оказать вам неоценимую услугу. Ситуация с залипшим золотником предохранительного клапана, увы, не так уж редка.
- Если клапан сбрасывает давление слишком часто — это явный признак того, что с объемом расширительного бачка вы просчитались. Совсем не обязательно менять его. Достаточно приобрести еще один и подключить его параллельно.
- Вода имеет сравнительно низкий коэффициент температурного расширения. Если вы перейдете с нее на незамерзающий теплоноситель (например, этиленгликоль), вам опять-таки понадобится увеличить объем расширительного бака или установить дополнительный.
Расширительный бак на фото смонтирован по всем правилам: теплоноситель подведен сверху, бак снабжен манометром и предохранительным клапаном.
Простейшие приемы расчета
Для того чтобы система отопления создавала в холодное время года комфортные условия проживания, она должна справляться с двумя основными задачами. Эти функции тесно связаны между собой, и разделение их – весьма условно.
Первое – это поддержание оптимального уровня температуры воздуха во всем объеме отапливаемого помещения. Безусловно, по высоте уровень температуры может несколько изменяться, но этот перепад не должен быть значительным. Вполне комфортными условиями считается усредненный показатель в +20 °С – именно такая температура, как правило, принимается за исходную в теплотехнических расчетах.
Если уж подходить с полной точностью, то для отдельных помещений в жилых домах установлены стандарты необходимого микроклимата – они определены ГОСТ 30494-96. Выдержка из этого документа – в размещенной ниже таблице:
оптимальная | допустимая | оптимальная | допустимая, max | оптимальная, max | допустимая, max | |
Для холодного времени года | ||||||
Жилая комната | 20÷22 | 18÷24 (20÷24) | 45÷30 | 60 | 0.15 | 0.2 |
То же, но для жилых комнат в регионах с минимальными температурами от — 31 °С и ниже | 21÷23 | 20÷24 (22÷24) | 45÷30 | 60 | 0.15 | 0.2 |
Кухня | 19÷21 | 18÷26 | Н/Н | Н/Н | 0.15 | 0.2 |
Туалет | 19÷21 | 18÷26 | Н/Н | Н/Н | 0.15 | 0.2 |
Ванная, совмещенный санузел | 24÷26 | 18÷26 | Н/Н | Н/Н | 0.15 | 0.2 |
Помещения для отдыха и учебных занятий | 20÷22 | 18÷24 | 45÷30 | 60 | 0.15 | 0.2 |
Межквартирный коридор | 18÷20 | 16÷22 | 45÷30 | 60 | Н/Н | Н/Н |
Вестибюль, лестничная клетка | 16÷18 | 14÷20 | Н/Н | Н/Н | Н/Н | Н/Н |
Кладовые | 16÷18 | 12÷22 | Н/Н | Н/Н | Н/Н | Н/Н |
Для теплого времени года (Норматив только для жилых помещений. Для остальных – не нормируется) | ||||||
Жилая комната | 22÷25 | 20÷28 | 60÷30 | 65 | 0.2 | 0.3 |
Второе – компенсирование потерь тепла через элементы конструкции здания.
Самый главный «противник» системы отопления — это теплопотери через строительные конструкции
Увы, теплопотери – это самый серьезный «соперник» любой системы отопления. Их можно свести к определенному минимуму, но даже при самой качественной термоизоляции полностью избавиться от них пока не получается. Утечки тепловой энергии идут по всем направлениям – примерное распределение их показано в таблице:
Фундамент, полы по грунту или над неотапливаемыми подвальными (цокольными) помещениями | от 5 до 10% |
«Мостики холода» через плохо изолированные стыки строительных конструкций | от 5 до 10% |
Места ввода инженерных коммуникаций (канализация, водопровод, газовые трубы, электрокабели и т.п.) | до 5% |
Внешние стены, в зависимости от степени утепленности | от 20 до 30% |
Некачественные окна и внешние двери | порядка 20÷25%, из них около 10% — через негерметизированные стыки между коробками и стеной, и за счет проветривания |
Крыша | до 20% |
Вентиляция и дымоход | до 25 ÷30% |
Естественно, чтобы справиться с такими задачами, система отопления должна обладать определенной тепловой мощностью, причем этот потенциал не только должен соответствовать общим потребностям здания (квартиры), но и быть правильно распределенным по помещениям, в соответствии с их площадью и целым рядом других важных факторов.
Обычно расчет и ведется в направлении «от малого к большому». Проще говоря, просчитывается потребное количество тепловой энергии для каждого отапливаемого помещения, полученные значения суммируются, добавляется примерно 10% запаса (чтобы оборудование не работало на пределе своих возможностей) – и результат покажет, какой мощности необходим котел отопления. А значения по каждой комнате станут отправной точкой для подсчета необходимого количества радиаторов.
Самый упрощённый и наиболее часто применяемый в непрофессиональной среде метод – принять норму 100 Вт тепловой энергии на каждый квадратный метр площади:
Самый примитивный способ подсчета — соотношение 100 Вт/м²
Q = S × 100
Q – необходимая тепловая мощность для помещения;
S – площадь помещения (м²);
100 — удельная мощность на единицу площади (Вт/м²).
Например, комната 3.2 × 5,5 м
S = 3,2 × 5,5 = 17,6 м²
Q = 17,6 × 100 = 1760 Вт ≈ 1,8 кВт
Расчет тепловой мощности от объема помещения
Понятно, что в этом случае значение удельной мощности рассчитано на кубический метр. Его принимают равным 41 Вт/м³ для железобетонного панельного дома, или 34 Вт/м³ — в кирпичном или выполненном из других материалов.
Q = S × h × 41 (или 34)
h – высота потолков (м);
41 или 34 – удельная мощность на единицу объема (Вт/м³).
Например, та же комната, в панельном доме, с высотой потолков в 3.2 м:
Q = 17,6 × 3,2 × 41 = 2309 Вт ≈ 2,3 кВт
Результат получается более точным, так как уже учитывает не только все линейные размеры помещения, но даже, в определенной степени, и особенности стен.
Но все же до настоящей точности он еще далек – многие нюансы оказываются «за скобками». Как выполнить более приближенные к реальным условиям расчеты – в следующем разделе публикации.
Подбор счётчиков тепла
Подбор счётчика тепла осуществляется исходя из технических условий теплоснабжающей организации и требований нормативных документов. Как правило, требования предъявляются к:
- схеме учёта
- составу узла учёта
- погрешности измерений
- составу и глубине архива
- динамическому диапазону датчика расхода
- наличию устройств съёма и передачи данных
Для коммерческих расчётов допускаются только сертифицированные счётчики тепловой энергии зарегистрированные в Государственном реестре средств измерительной техники. В Украине запрещено использовать для коммерческих расчётов счётчики тепловой энергии датчики расхода которых имеют динамический диапазон менее чем 1:10.
Особенности работы бака с мембраной
При увеличении объема жидкости в закрытом контуре значения давления увеличиваются, и происходит процесс воздействия на эластичную перегородку расширительного бака. Она деформируется, воздействуя на газовую среду в воздушном отделе, освобождая место в жидкостной части сосуда, в которую постепенно притекает избыточное количество жидкости. Необходимо заметить, что при эксплуатации РБ необходимо производить контроль давления в газовом осеке, и при необходимости производить его подкачку. Для контроля, обычно, ниппель снабжается стационарным манометром.
Каждая жидкостная отопительная система достаточно инерционна, а нагрев и охлаждение жидкости не проистекает одномоментно. Увеличение и снижение объема жидкостной камеры происходит постепенно, что позволяет избежать разрушительных для всех частей контура гидравлических ударов.
Конструкция расширительного бака
Расширительный бак представляет собой корпус из углеродистой стали с порошковым красным, серым или белым покрытием, внутри которого расположена резиновая мембрана по типу диафрагмы или в виде баллона. Первую в основном используют в небольших ёмкостях, вторую – в крупных. Баки в заводской комплектации иногда снабжены предохранительным клапаном, защищающим систему от превышения допустимого давления. Если это происходит, клапан открывается, выпуская избыток воды. Лучше перестраховаться и убедиться, что в вашем изделии он есть. Если нет – докупить и смонтировать рядом с баком.
Расширительный бак с мембраной в виде диафрагмы. Такое устройство больше напоминает бочонок, разделённый надвое подвижной резиновой перегородкой. На производстве в верхнюю часть ёмкости закачивают воздух, который создаёт начальное давление. После подключения бака в его нижнюю камеру начинает поступать теплоноситель из сети. В тот момент, когда эластичная мембрана становится в нулевое-, спокойное положение и как бы ложится на поверхность теплоносителя, отопительная система считается полностью заполненной и готовой к запуску. Когда температура теплоносителя растёт, его объём увеличивается, и избыток сбрасывается в расширительный бак. За счёт сжатия воздуха мембрана отодвигается в воздушную камеру, благодаря чему внутреннее пространство бака становится больше, и туда поступает избыток теплоносителя. Как только теплоноситель остывает и возвращается к первоначальному объёму, воздействие на мембрану прекращается и воздух в верхней камере, не испытывая противодействия, приводит мембрану в исходное, спокойное положение, тем самым происходит автоматическая регулировка давления в системе.
Объемы воды для различных элементов системы отопления
Объем воды (литры) в секции радиатора
Материал/тип радиатора | Габариты*: высота×ширина, мм | Объем, л |
Алюминий | 600×80 | 0,450 |
Биметалл | 600×80 | 0,250 |
Современная чугунная батарея (плоский) | 580×75 | 1,000 |
Чугунная батарея старого образца () | 600×110 | 1,700 |
*ВАЖНО! Габариты в таблице даны ориентировочно. В большинстве моделей современных производителей они составляют ±20 мм по ширине, высота радиаторов отопления может варьироваться от 200 до 1000 мм
В большинстве моделей современных производителей они составляют ±20 мм по ширине, высота радиаторов отопления может варьироваться от 200 до 1000 мм.
Объем сильно отличающихся по высоте радиаторов можно приблизительно рассчитать из данной таблицы по правилу пропорции: необходимо объем разделить на высоту и умножить после на высоту выбранной модели. Если система отопления протяженная, то лучше уточнить параметры объема у производителя.
Объем воды в 1 погонном метре трубы
- ø15 (G ½») — 0,177 литра
- ø20 (G ¾») — 0,310 литра
- ø25 (G 1,0″) — 0,490 литра
- ø32 (G 1¼») — 0,800 литра
- ø40 (G 1½») — 1,250 литра
- ø50 (G 2,0″) — 1,960 литра
Основные размеры внутренних диаметров труб (взят ряд значений от 14 до 54 мм), с которыми может столкнуться потребитель.
Внутренний диаметр, мм | Объем жидкости в 1 м погонного трубы, л | Внутренний диаметр, мм | Объем жидкости в 1 м погонного трубы, л |
14 | 0,1539 | 30 | 0,7069 |
15 | 0,1767 | 32 | 0,8042 |
16 | 0,2011 | 34 | 0,9079 |
17 | 0,2270 | 36 | 1,0179 |
18 | 0,2545 | 38 | 1,1341 |
19 | 0,2835 | 40 | 1,2566 |
20 | 0,3142 | 42 | 1,3854 |
21 | 0,3464 | 44 | 1,5205 |
22 | 0,3801 | 46 | 1,6619 |
23 | 0,4155 | 48 | 1,8096 |
24 | 0,4524 | 50 | 1,9635 |
26 | 0,5309 | 52 | 2,1237 |
28 | 0,6158 | 54 | 2,2902 |
Антифриз в качестве теплоносителя
Более высокими характеристиками для эффективной работы отопительной системы обладает такой тип теплоносителя, как антифриз. Заливая антифриз в контур отопительной системы, можно свести риск замерзания отопительной системы в холодное время года до минимума. Антифриз рассчитан на более низкие температуры, чем вода, и они не способны изменить его физического состояния. Антифриз выделяется многими преимуществами, так как он не вызывает отложений накипи и не способствует коррозийному износу внутренней области элементов системы отопления.
Даже если антифриз и затвердеет при очень низких температурах, он не будет расширяться подобно воде, а это не повлечет никаких поломок компонентов отопительной системы. В случае замерзания антифриз превратится в гелеобразный состав, а объем сохранится прежний. Если после замерзания температура теплоносителя в системе отопления повысится, он из гелеобразного состояния перейдет в жидкое, а это не вызовет никаких негативных последствий для отопительного контура.
Многие производители добавляют в антифриз различные присадки, которые способны увеличить эксплуатационный срок отопительной системы.
Такие присадки способствуют удалению из элементов отопительной системы различных отложений и накипи, а также устраняют очаги коррозии. Выбирая антифриз, нужно помнить, что такой теплоноситель не является универсальным. Присадки, которые в нем содержаться, подойдут только для определенных материалов.
Существующие теплоносители для систем отопления-антифризы можно разделить на две категории исходя из температуры их замерзания. Одни рассчитаны на температуру до – 6 градусов, а другие до -35 градусов.
Свойства различных видов антифризов
Состав такого теплоносителя, как антифриз рассчитан на полных пять лет эксплуатации, или на 10 сезонов отопления. Расчет теплоносителя в системе отопления должен быть точным.
Существуют у антифриза и свои недостатки:
- Теплоемкость антифриза на 15% ниже, чем у воды, а значит, они будут медленнее отдавать тепло;
- У них довольно высокая вязкость, а это значит, что в систему нужно будет монтировать достаточно мощный циркуляционный насос.
- При нагреве антифриз увеличивается в объеме больше чем вода, значит, отопительная система должна включать расширительный бак закрытого типа, а радиаторы должны обладать большей емкостью, чем те, которые используются для организации отопительной системы, в которой теплоносителем является вода.
- Скорость теплоносителя в системе отопления – то есть, текучесть антифриза, на 50% больше чем у воды, значит, все соединительные разъемы отопительной системы необходимо очень тщательно герметизировать.
- Антифриз, который включает в свой состав этиленгликоль, является для человека токсичным, поэтому его можно использовать только для котлов одноконтурного типа.
В случае использования в системе отопления такого типа теплоносителя, как антифриз, необходимо учитывать определенные условия:
- Система должны быть дополнена циркуляционным насосом с мощными параметрами. Если циркуляция теплоносителя в системе отопления и контур отопления является большой протяженности, то циркуляционный насос должен быть наружной установки.
- Объем расширительного бака должен быть не меньше, чем в два раза по сравнению с баком, который применяется для такого теплоносителя, как вода.
- В отопительную систему необходимо монтировать объемные радиаторы и трубы с большим диаметром.
- Запрещается использовать воздухоотводчики автоматического типа. Для отопительной системы, в которой теплоносителем является антифриз, можно использовать только краны ручного типа. Более популярным краном ручного типа является кран Маевского.
- Если антифриз разбавлять, то только с дистиллированной водой. Талая, дождевая или колодезная вода никак не подойдут.
- Перед тем, как будет производиться заправка системы отопления теплоносителем – антифризом, ее нужно хорошо промыть водой, не забывая и про котел. Производители антифризов рекомендуют менять их в системе отопления хотя бы раз в три года.
- Если котел холодный, то не рекомендуется задавать сразу высокие нормативы температуры теплоносителя системе отопления. Она должны подниматься постепенным образом, теплоносителю необходимо некоторое время на обогрев.
Если зимой двухконтурный котел, работающий на антифризе, будет отключен на долгий период, то необходимо из контура горячего водоснабжения слить воду. В случае замерзания вода может расшириться и нанести ущерб трубам или другим элементам отопительной системы.
Расчет объема воды в системе отопления с онлайн калькулятором
Каждая отопительная система обладает рядом значимых характеристик – номинальную тепловую мощность, расход топлива и объем теплоносителя. Расчет объема воды в системе отопления требует комплексного и скрупулезного подхода. Так, вы сможете выяснить, котел, какой мощности выбрать, определить объем расширительного бака и необходимое количество жидкости для заполнения системы.
Значительная часть жидкости располагается в трубопроводах, которые в схеме теплоснабжения занимают самую большую часть.
Поэтому для расчета объема воды нужно знать характеристики труб, и важнейший из них – это диаметр, который определяет вместимость жидкости в магистрали.
Если неправильно сделать расчеты, то система будет работать не эффективно, помещение не будет прогреваться на должном уровне. Сделать корректный расчет объемов для системы отопления поможет онлайн калькулятор.
Калькулятор объема жидкости в отопительной системе
В системе отопления могут использоваться трубы различных диаметров, особенно в коллекторных схемах. Поэтому объем жидкости вычисляют по следующей формуле:
Рассчитывается объем воды в системе отопления можно также как сумма ее составляющих:
В сумме эти данные позволяют рассчитать большую часть объема системы отопления. Однако кроме труб в системе теплоснабжения есть и другие компоненты. Чтобы произвести расчет объема отопительной системы, включая все важные компоненты теплоснабжения, воспользуйтесь нашим онлайн калькулятором объема системы отопления.
Совет
Сделать вычисление с помощью калькулятора очень просто. Нужно ввести в таблицу некоторые параметры, касающиеся типа радиаторов, диаметра и длины труб, объема воды в коллекторе и т.д. Затем нужно нажать на кнопку «Рассчитать» и программа выдаст вам точный объем вашей системы отопления.
Проверить калькулятор можно, используя указанные выше формулы.
Пример расчета объема воды в системе отопления:
Значения объемов различных составляющих
Объем воды в радиаторе:
- алюминиевый радиатор — 1 секция — 0,450 литра
- биметаллический радиатор — 1 секция — 0,250 литра
- новая чугунная батарея 1 секция — 1,000 литр
- старая чугунная батарея 1 секция — 1,700 литра.
Объем воды в 1 погонном метре трубы:
- ø15 (G ½») — 0,177 литра
- ø20 (G ¾») — 0,310 литра
- ø25 (G 1,0″) — 0,490 литра
- ø32 (G 1¼») — 0,800 литра
- ø15 (G 1½») — 1,250 литра
- ø15 (G 2,0″) — 1,960 литра.
Чтобы посчитать весь объем жидкости в отопительной системе нужно еще добавить объем теплоносителя в котле. Эти данные указываются в сопроводительном паспорте устройства или же взять примерные параметры:
- напольный котел — 40 литров воды;
- настенный котел — 3 литра воды.
Выбор котла напрямую зависит от объема жидкости в системе теплоснабжения помещения.
Основные виды теплоносителей
Существует четыре основных вида жидкости, используемых для заполнения отопительных систем:
- Вода – максимально простой и доступный теплоноситель, который может использоваться в любых отопительных системах. Вместе с полипропиленовыми трубами, которые предотвращают испарение, вода становится практически вечным теплоносителем.
- Антифриз – этот теплоноситель обойдется уже дороже воды, и используется в системах нерегулярно отапливаемых помещений.
- Спиртосодержащие теплоносители – это дорогостоящий вариант заполнения отопительной системы. Качественная спиртосодержащая жидкость содержит от 60% спирта, около 30% воды и порядка 10% объема составляют другие добавки. Такие смеси обладают отличными незамерзающими свойствами, но огнеопасны.
- Масло – в качестве теплоносителя используется только в специальных котлах, но в отопительных системах практически не применяется, так как эксплуатация такой системы обходится очень дорого. Также масло очень долго разогревается (необходим разогрев, как минимум, до 120°С), что технологически очень опасно, при этом и остывает такая жидкость очень долго, поддерживая высокую температуру в помещении.
В заключении стоит сказать, что если система отопления модернизируется, монтируются трубы или батареи, то нужно произвести перерасчет ее общего объема, согласно новым характеристика всех элементов системы.
В итоге
Как видно, расчет емкости отопления сводится к вычислению суммарного значения четырех вышеуказанных элементов.
Определить необходимую емкость рабочей жидкости в системе с математической точностью удается не каждому. Поэтому, не желая выполнять расчет, некоторые пользователи действуют следующим образом. Для начала заполняют систему примерно на 90%, после чего проверяют работоспособность. Далее стравливают скопившийся воздух и продолжают заполнение.
В процессе эксплуатации отопительной системы происходит естественный спад уровня теплоносителя в результате конвекционных процессов. При этом происходит потеря мощности и производительности котла. Отсюда вытекает необходимость наличия резервной емкости с рабочей жидкостью, откуда можно будет отслеживать убыток теплоносителя и при необходимости производить его пополнение.
1. 2. 3.
По совокупности признаков бесспорным лидером среди теплоносителей является обыкновенная вода. Лучше всего использовать дистиллированную воду, хотя подойдет и кипячёная или химически обработанная – для осаждения растворённых в воде солей и кислорода.
Однако если существует вероятность того, что температура в помещении с системой отопления на некоторое время опустится ниже нуля, то вода в качестве теплоносителя не подойдёт. Если она замёрзнет, то при увеличении объёма велика вероятность необратимого повреждения системы отопления. В таких случаях используют теплоноситель на базе антифриза.