Где используется и как выбрать электромагнитное реле
Сложно в это поверить, но самое простое реле стало причиной быстрого развития компьютеров и компьютерной техники и вот почему: в нем бывает два состояния вкл/выкл, а именно эти два состояния схожи с двоичным кодом транзисторов процессора.
Также это простое устройство нашло широкое применение в промышленности, в транспорте, в бытовом оборудовании, энергетики, космонавтике, медицине и.т.д. С ним мы сталкиваемся ежедневно, но не замечаем этого. Например, в ИБП или стабилизаторе напряжения, мгновенно реагирующим на перепады напряжения.
Справочник по слаботочным электрическим реле 3-е издание – скачать
Электромагнитные реле на схемах: обмотки, контактные группы
Особенность реле в том, что оно состоит из двух частей — обмотки и контактов. Обмотка и контакты имеют различное обозначение. Обмотка графически выглядит как прямоугольник, контакты разного таки имеют каждый свое обозначение. Оно отражает их название/назначения, так что проблем с идентификацией обычно не возникает.
Типы контактов электромагнитных реле и их обозначение на схемах
Иногда рядом с графическим изображением ставят обозначение типа — НЗ (нормально замкнутый) или НО (нормально открытый). Но чаще прописывают принадлежность к реле и номер контактной группы, а тип контакта понятен по графическому изображению.
Вообще, искать контакты реле надо по всей схеме. Ведь физически оно находится в одном месте, а разные его контакты являются частью разных цепей. Это и отображается на схемах. Обмотка в одном месте — в цепи подачи питания. Контакты разбросаны в разных местах — в цепях, в которых они работают.
Пример схемы на электромагнитных реле: контакты находятся в соответствующих цепях (см. цветовую маркировку)
Для примера посмотрите на схему с реле. Реле КА, КV1 и КМ имеют одну контактную группу, КV3 — две, KV2 — три. Но три — это далеко не предел. Контактных групп в каждом реле может быть и десять-двенадцать и больше. И схема на рисунке простая. А если она занимает пару листов формата А2 и в ней масса элементов…
Твердотельное реле
И вот, если мы соберем все плюсы механических и электронных импульсных реле, то получим достоинства твердотельных.
Суть работы твердотельного реле заключается в использовании эффекта воздействия света на pn-переход. В отличие от механических реле у твердотельных реле отсутствуют механические замыкания и размыкания контактов. Для этих целей в твердотельных реле используются полупроводниковые элементы.
Фото твердотельных реле Schneider Electric с охладителями
Принцип работы
Мы подаем ток на светодиод, и он, в свою очередь, воздействует на pn-переход коммутационной сети, замыкая или размыкая ее.
Твердотельные реле делятся на два основных вида. Это реле постоянного и переменного тока.
Твердотельные реле постоянного тока
Твердотельные реле постоянного тока очень надежны. Их срок службы, по сравнению с механическими, практически бесконечен. Работают они при температурах от -30 +70 градусов Цельсия.
Твердотельные реле переменного тока
Основная особенность твердотельных реле переменного тока — это пониженный уровень электромагнитных помех, малый расход энергии, абсолютная бесшумность и практически мгновенное срабатывание.
Достоинства
- Бесшумные.
- Отсутствуют подвижные детали. Срок службы — десятки лет.
- Коммутация с минимумом помех.
- Практически мгновенное срабатывание.
- Малое потребление электроэнергии.
- Очень малые размеры, при этом могут работать с большими токами.
- Широкая сфера применения. Благодаря минимальным размерам и большому количеству настроек срабатывания, используются практически везде.
- Благодаря большому расстоянию между цепью управления и управляемой цепью обеспечивается надежная изоляция.
- Очень прочные. Почти безразличны к вибрациям и ударам.
Недостатки
Казалось бы, давайте заменим все реле на твердотельные, и бед знать не будем, но здесь не все так просто. Два недостатка у твердотельных реле все же есть. И порой они становятся решающими.
- Сильный нагрев.
- Высокая цена.
При малых токах величина нагрева, конечно же, не существенна. Однако когда мы говорим о больших потребителях электричества, например, требуется коммутировать электрический обогреватель, то величина нагрева увеличиваются значительно. А если в цепи произойдет короткое замыкание, то полупроводники в твердотельных реле расплавятся очень быстро. Да, реле, конечно, может быть защищено от короткого замыкания и оснащено системой охлаждения, но при этом оно становится достаточно дорогим.
Абсолютная тишина. Можно монтировать на этаже
Полное отсутствие шума в процессе работы этих реле позволяет выполнять монтаж твердотельных реле, где угодно. Можно монтировать в электрических щитах на этажах, здесь ограничений нет.
Твердотельное реле в системах управления и автоматики
Как и электромагнитное реле, твердотельное реле работает, удерживает цепь замкнутой, только в течение того времени, пока на реле подается напряжение. То есть это не тот случай, как с триггером или поляризованным реле, когда подал управляющее напряжение, и «забыл» — цепь будет замкнута сколько угодно долго до следующего отключающего сигнала. Для замыкания цепи на твердотельное реле должно подаваться напряжение постоянно, поэтому это реле не может работать с кнопками без контроллера.
Между кнопками включения света и твердотельным реле всегда требуется контроллер, который подает на реле удерживающее коммутацию напряжение.
Схема электрической цепи – применение и классификация.
Однако, в современных электромеханических системах, где для управления исполнительными двигателями используются преобразователи частоты, система напряжений в общем случае является несинусоидальной.
Источник питания на рис. Действующее значение связано с амплитудным простым соотношением 2. Нюансы графической маркировки Чтобы удобнее было анализировать и рассчитывать электрическую цепь, её изображают в виде схемы.
Активный двухполюсник содержит источники электрической энергии, а пассивный двухполюсник их не содержит.
Когда по цепи течет ток, за некоторое время по ней пройдет некоторое количество электричества и выполнится определенная работа. В этом случае они считаются первичными. Каждая электрическая цепь включает в себя различные устройства и объекты, создающие пути для прохождения электрического тока. Точка, в которой концы фаз соединяются в общий узел, называется нейтральной на рис.
Конструкция и принцип действия
Существует множество электронных моделей защитных устройств. Большинство из них имеет стандартную конструкцию. Прибор состоит из следующих элементов:
- электромагнит;
- якоря;
- контакты;
- отводы, через которые устройство подсоединяется к сети;
- пружины.
Принцип работы токового реле заключается в том, что когда аппарат подключается к сети, катушка получает электрическую энергию. Далее через якорь и металлический сердечник происходит сплетение контактов. В это же время замыкаются контакты всех приборов, которые были включены в цепь прибора. При этом ток может вовсе не подаваться, а если же подаётся, то неравномерно. В этом случае контакты приборов поднимаются, и цепь размыкается.
Вам это будет интересно Особенности генератора электрической энергии
Например, в твердотельном приборе предусмотрены дополнительные силовые ключи на тиристорах и симисторах, поэтому он считается более эффективным
Важное значение имеет пропускная способность аппарата
Виды электрических схем
Первым делом стоит учесть, что схема — это графическое отображение элементов конструкции, узлов и их связей на бумаге, либо в электронной форме при помощи общепринятых условных обозначений. Всего различается около десятка видов схем, но чаще всего встречаются следующие:
- Функциональная;
- Принципиальная;
- Монтажная.
Их можно встретить в документации к сложным электронным приборам, в руководствах по ремонту техники для мастеров-любителей или в планах по проведению проводки. Ввиду их распространенности с следует рассмотреть отдельно каждый вид.
Функциональная схема
Она не отображает детально конструкцию, а содержит изображение основных блоков устройства с подписями и функциональных узлов. Ориентируясь на данный чертеж, можно только узнать о том, как работает вся система прибора, как связаны между собой различные элементы. Функциональную схему целесообразно применять для описания, например, сложного электронного устройства, но не всегда для устройств электроснабжения.
Принципиальная схема
Содержит в себе определенный набор обозначений элементов, в соответствии с составом прибора. Для верной расшифровки чертежа необходимо знать основные условно графические отображения электроэлементов. В таком виде схем указываются связи между устройствами и сами их составляющие элементы. Для отображения силовых линий целесообразно чертить линейную схему, а для указания видов электрических цепей и проборов контроля, управления – полная принципиальная.
Назначение и классификация реле максимального тока
Реле способно контролировать показатель тока на установленном участке электрической цепи. В случае если этот показатель превышен, реле способно разомкнуть цепь или подать сигнал в виде света или звука о неисправности электролинии.
Розеточные устройства применяются для электронных приборов, которые сильно реагируют на резкие перепады токового параметра и напряжения. При этом дорогие приборы защищаются от коротких замыканий, а также резкого повышения напряжения в электролинии.
Устройства, предназначенные для электроприборов высокой мощности, контролируют показатели токов, при этом защищая магнитные пускатели, электродвигатели, контролеры, трансформаторы и другие элементы электрической сети.
Реле максимального тока делятся на первичные и вторичные типы измерения.
Первый вид измерения предназначен для электрических сетей, имеющих напряжение до 1кВ, при этом он подсоединяется напрямую своими выводами.
Другой тип подсоединяется посредством трансформатора тока, при этом проводя замеры вторичного тока. Трансформатор изменяет ток в сторону наименьшей величины, который соответствует для данного устройства. Поэтому в такой электрической сети можно эксплуатировать прибор, с небольшим токовым показателем. Этот тип используется в высоковольтных цепях.
Вторичные типы измерения имеют подгруппы: электронные, электромагнитные, а также дифференциальные и индукционные типы.
Графические символы в электрике
Графические символы подразделяются на базовые изображения, на обозначения шин и проводов, обозначения линейных схем, символы розеток и другие элементы.
Основные базовые изображения являются обязательными, в них несложно разобраться даже начинающему мастеру, без них не обходится ни один электроприбор. В приборе установлены резисторы, конденсаторы, катушки, диоды, контакты — всем им присвоены обозначения. Отдельные элементы, такие как катушки, имеют маленькие размеры и применяются почти повсюду, что озадачивает новичков. Не лишним будет знать схематичные изображения этих элементов.
Несколько примеров базовых изображений:
- диоды обозначаются треугольником, пересекаемым линией;
- окружность с диаметром 12 мм указывает на транзисторы;
- для обозначения резистора используется прямоугольник (размер 4х10мм);
- катушки изображаются дуговыми линиями в количестве от 2 до 4, все зависит от назначения;
- значок контакта — разомкнутая линия, с отрезком 6 мм на одном конце.
К базовым изображениям относятся функции подвижных и неподвижных контактов, с указанием в схемах.
Изображения проводов, кабелей и шин
Эти изображения состоят из линий: прямых, пунктирных, пересеченных. Они соединяют все элементы в правильной последовательности. Подробней рассмотрим их виды и значение:
Например, прямая линия с точкой на конце обозначает, где заканчивается проводка, а на линии из нескольких проводников будут нанесены засечки. В необходимых случаях над линиями допускается указывать виды тока, порядок прокладки проводки, значение напряжения и другие отметки.
Условное обозначение проводки на электросхемах
Обозначение проводки в трубах и гофрорукаве
Обозначение прокладки шин и шинопроводов
Схематически изображаются провода, которые отличаются назначением и способом прокладки. Все обозначения помогут выбрать подходящий для монтажных работ материал и позволять судить о мощности электросети.
Как изображаются однолинейные схемы?
Однолинейные схемы понадобятся для сборки электрощитов. В их основе — устройство защитного отключения (сокращенно УЗО), контакторы, автоматика, нулевые и земляные шины, и другое оборудование. При работе с такой схемой нужно быть особо внимательным, так как часть символов имеет схожий характер. В пример можно привести катушки реле, для графики которых используется только прямоугольник. Однообразно обозначаются контактор и рубильник, здесь главное заметить один небольшой элемент на стационарном контакте.
При составлении однолинейной схемы важно понимать, что некоторые символы обозначаются несколькими значками: скажем, наличие двух галочек подряд указывает на количество проводов
Обозначения ламп и светильников
Эти символы особенно необходимы, если в доме есть сложные светильные установки. В отличие от остальных обозначений они достаточно просты и легко запоминаются.
К примеру говоря, обычным кружком обозначается светильник с галогеновой лампой или лампочкой накаливания; узкий и длинный прямоугольник указывает на люминисцентную лампу. Специальная символика есть даже для ламповых патронов.
Обозначение светильников на электросхемах
Разобраться в этих знаках полезно всем, кто планирут составить схему по энергообеспечению своего жилья.
Немного об особенностях выбора
Предел максимальной нагрузки отдельно взятого управляемого механизма, обозначенные нормативными условиями параметры, технические задания – вот главные факторы, обуславливающие выбор РМТ. Для модификаций последних разработок свойственны компактные габариты и возможность их непосредственного монтажа во внутреннем пространстве шкафов управления. Преимущества РМТ заключаются в способности вывода для обзора на цифровом табло действующих значений, гибко меняющемся алгоритме рабочего процесса, обширном диапазоне установочных функций и настроек.
Рекомендуем для просмотра еще одно видео, которое будет весьма полезным
При подборе конфигурации не забывайте о различиях разных моделей по заложенным производителям характеристикам:
- значениями герметичности, исключающей попадание во внутреннюю часть влаги;
- указанным в инструкции гарантийным сроком, определяющим степень надежности;
- устойчивостью к воздействию химических веществ и коррозии;
- параметрами прочности, что нивелирует вероятность механических повреждений.
Стоит также обратить внимание на характеристики допустимого температурного режима во время работы. Вывод можно сделать такой – обширный ассортимент моделей позволяет подобрать наиболее подходящий вариант РМТ как для промышленных нужд, так и для бытового использования
Вывод можно сделать такой – обширный ассортимент моделей позволяет подобрать наиболее подходящий вариант РМТ как для промышленных нужд, так и для бытового использования.
Похожие материалы:
- Блуждающий ток
- Как проверить утечку тока в автомобиле
- Что называется током?
- Работа трансформатора тока
Основные виды реле и их назначение
Производители настраивают современные коммутационные устройства таким образом, чтобы срабатывание происходило только при определенных условиях, например, при увеличении силы тока, поступающего на входные клеммы КУ. Ниже мы вкратце рассмотрим основные виды соленоидов и их назначение.
Электромагнитные реле
Электромагнитное реле – это электромеханическое коммутационное устройство, принцип действия которого основан на воздействии магнитного поля, созданного током в статичной обмотке, на якорь. Этот вид КУ разделяется собственно на электромагнитные (нейтральные) устройства, которые реагируют лишь на значение тока, подаваемого на обмотку, и поляризованные, работа которых зависит как от токовой величины, так и от полярности.
Принцип работы электромагнитного соленоида
Используемые в промышленном оборудовании электромагнитные реле находятся на промежуточной позиции между сильноточными устройствами (магнитными пускателями, контакторами и т.д.) и слаботочным оборудованием. Наиболее часто данный вид реле применяется в цепях управления.
Реле переменного тока
Срабатывание этого вида реле, как видно из названия, происходит при подаче на обмотку переменного тока определенной частоты. Данное коммутирующее устройство для переменного тока с контролем перехода фазы через ноль или без такового, представляет собой блок из тиристоров, выпрямительных диодов и управляющих схем. Реле переменного тока могут быть выполнены в виде модулей на основе трансформаторной или оптической развязки. Данные КУ применяются в сетях переменного тока с максимальным напряжением 1,6 кВ и средним током нагрузки до 320 A.
Промежуточное реле 220 В
Иногда работа электросети и приборов не возможна без использования промежуточного реле на 220 В. Обычно КУ данного типа применяется, если необходимо разомкнуть или разомкнуть разнонаправленные контакты цепи. К примеру, если используется осветительный прибор с датчиком движения, то один проводник присоединяется к сенсору, а другой подводит электроэнергию к светильнику.
Реле переменного тока широко применяются в промышленном оборудовании и бытовой технике
Работает это таким образом:
- подача тока на первое коммутационное устройство;
- от контактов первого КУ ток поступает на следующее реле, которое имеет более высокие характеристики, чем у предыдущего и способно выдерживать токи с высокими значениями.
С каждым годом реле становятся эффективней и компактней
Функции малогабаритного реле переменного тока с напряжением 220 В весьма разнообразны и широко используются в качестве вспомогательного устройства в самых различных областях. Данный вид КУ применяется в тех случаях, когда основное реле не справляется со своей задачей или же при большом количестве управляемых сетей которые уже не в состоянии обслужить головное устройство.
Промежуточное коммутационное устройство применяется в промышленном и медицинском оборудовании, транспорте, холодильном оборудовании, телевизорах и прочей бытовой технике.
Реле постоянного тока
Реле постоянного тока делятся на нейтральные и поляризованные. Отличие между ними состоит в том, что поляризованные КУ постоянного тока чувствительны к полярности подаваемого напряжения. Якорь коммутационного устройства меняет направление движения в зависимости от полюсов питания. Нейтральные электромагнитные реле постоянного тока не зависят от полярности напряжения.
Электромагнитные КУ постоянного тока в основном используют, когда нет возможности подключения к электрической сети переменного тока.
Четырехконтактное автомобильное реле
К недостаткам соленоидов постоянного тока относят необходимость использования блока питания и более высокую стоимость в сравнении с КУ переменного тока.
Данное видео демонстрирует схему подключения и объясняет принцип работы 4 контактного реле:
Watch this video on YouTube
Электронное реле
Электронное реле управления в схеме прибора
Разобравшись с тем, что такое токовое реле, рассмотрим электронный тип этого устройства. Конструкция и принцип действия электронных реле практически те же, что и в электромеханических КУ. Однако, для выполнения необходимых функций в электронном устройстве используется полупроводниковый диод. В современных транспортных средствах большинство функций реле и переключателей выполняют электронные релейные блоки управления и на данный момент невозможно полностью от них отказаться. Так, например, блок электронных реле позволяет контролировать расход энергии, величину напряжения на клеммах аккумуляторных батарей, управлять системой освещения и т.д.
ПРИМЕНЕНИЕ ЭЛЕКТРОМАГНИТНЫХ РЕЛЕ
Пожалуй, наиболее широкое распространение реле, работающие с использованием электромагнитного принципа получили в сфере распределения и производства электрической энергии.
Релейная защита высоковольтных линий обеспечивает безаварийный режим работы подстанций и другого подключенного оборудования.
Управляющие элементы, используемые в установках релейной защиты рассчитаны на коммутацию присоединения при рабочих напряжениях, достигающих нескольких сотен тысяч вольт. Широкое распространение релейной защиты высоковольтных линий обусловлено:
- высокой долговечностью релейных элементов;
- быстрой реакцией на изменение параметров подключенных линий;
- способностью работы в условиях высокой напряженности электромагнитных полей и нечувствительностью к появлению паразитных электрических потенциалов.
Также посредством установок релейной защиты осуществляется резервирование линий электропередач и моментальный вывод из работы поврежденных участков электросети, к примеру, при замыкании линии на землю или обрыве токоведущих частей. На сегодняшний день еще не изобретены более надежные средства защиты линий электропередач чем релейная защита.
Кроме того, в настоящее время электромагнитный тип реле широко используется в системах управления производственными, конвейерными линиями. Чаще всего данный вид систем управления используется на производствах с наличием высоких паразитных потенциалов делающих невозможным использование полупроводниковых систем управления.
К примеру, известен случай, когда при модернизации систем управления конвейерными линиями на одном из элеваторов новое оборудование, построенное новейших полупроводниковых элементах, постоянно выходило из строя.
Как позже выяснилось причиной поломки стало статическое электричество, возникающее при движении зерна по конвейерной ленте, а так как система выравнивания потенциалов была не предусмотрена в данных помещениях, то стал вопрос о переносе пульта управления в защищенное помещение.
Это было сопряжено с огромными материальными затратами. В результате было принято решение перейти на релейные блоки управления, нечувствительные к статическому напряжению.
Принципы работы заложенные в основу функционирования электромагнитных реле используются в устройствах дистанционного управления нагрузкой — пускателях или контакторах.
Принцип работы этих устройств во многом напоминает работу реле, с той лишь разницей, что предназначены данные устройства для коммутации силовых цепей сила тока, в которых может достигать 1000 А, а в случае особо мощных установок и выше.
Помимо низковольтного оборудования релейные блоки используются для управления, конденсаторными установками, которые используются для плавного пуска электрических двигателей высокой мощности.
Но самым знаковым применением реле электромагнитного типа является их использование в первых электронно-вычислительных машинах, в качестве логических элементов способных выполнять простейшие логические операции. Не смотря на низкое быстродействие эти первые компьютеры по надежности превосходили следующее поколение ламповых вычислительных комплексов.
Простейшими примерами использования электромагнитного реле в повседневной жизни являются реле управления в различных видах бытовой техники: холодильниках, стиральных машинах и т.п.
2012-2021 г. Все права защищены.
Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
Нулевой защитный проводник, система заземления квартиры
В этой статье речь пойдет о заземлении в квартире , а именно, что такое система заземления квартиры и нулевой защитный проводник. Рассмотрим системы заземления TN-C, TN-S, TN-C-S.
Как обозначается нулевой защитный проводник
Электропитание квартиры осуществляется переменным током с напряжением, номиналом 220-230 Вольт.
- При этом один рабочий проводник является фазным (или просто «Фаза»), а второй рабочий проводник является нулевым (иначе «рабочий ноль»). На схемах «Фаза» обозначается -L,»Ноль» обозначается-N. Такая электропроводка называется двухпроводная.
- Помимо двухпроводной электропроводки квартиры, применяется трехпроводная . Третий провод является нулевым защитным проводом (или «Земля»), обозначается-PE. Цвет жилы заземления в кабеле желто-зеленый.
На схеме и приборах нулевой защитный проводник (ЗЕМЛЯ) обозначается так.
Назначение нулевого защитного проводника
Предназначен нулевой защитный проводник для создания кратковременного тока короткого замыкания и срабатывания защитного отключения поврежденного электроприбора от питающей сети, с целью обеспечения вашей электробезопасности .
Система питания и система заземления
В жилых зданиях электропитание осуществляется от электроустановок в которых нейтраль(Ноль) источника питания глухозаземленна, а открытые проводящие части электроустановки присоединены к этой глухозаземленной нейтрали. Обозначается эта система электропитания-TN.
Система электропитания TN для вашей квартиры может быть одной из трех видов.
1.Система заземления TN-C
с и с т е м а TN-С — это система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении линии от источника до квартиры.
Система электропитания квартиры TN-C
Важно! Эта система электропитания применяется во всех старых домах. С 2007 года согласно ПУЭ (правила Устройства Электроустановок) схема проводки TN-C во вновь строящихся домах запрещена
При серьезном ремонте квартиры необходимо перевести схему электропроводки TN квартиры на систему TN-C-S (смотри ниже).
2.Система заземления TN-S
с и с т е м а электропитания TN-S -это измененная система электропитания TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении линии от источника до квартиры.
Система электропитания квартиры TN-S
Важно! Не путать на протяжении всей электропроводки квартиры проводники PE (Земля) и N (ноль)
3.Система заземления TN-C-S
с и с т е м а электропитания TN-C-S — это измененная система электропитания TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания.
Система электропитания квартиры TN-C-S
То есть в квартире проводники PE (Земля) и N (Ноль) разделены, а в этажном щите совмещены и присоединены к одной клемме (смотри схему выше).
Эта схема заземления особенно актуальна при серьезном ремонте квартиры с системой питания TN-C и переходе электропроводки на систему электропитания TN-C-S.
Правила при монтаже трехпроводной системы электропитания квартиры
- Нулевой защитный проводник не должен прерываться никакими предохранителями и автоматами защиты.
- При наличии в щите УЗО (устройство защитного отключения) нулевой защитный провод(Земля) не должен нигде ,на линии электропитания,иметь контакта с N проводником(Ноль). В противном случае будет срабатывать УЗО (устройство защитного отключения).
- Нулевой защитный проводник в квартире, должен иметь сечение равное сечению рабочих проводников.
- Нулевой защитный проводник должен прокладываться в непосредственной близости от рабочих проводников.Иными словами в одном кабеле.
- Прокладка нулевого защитного проводника отдельно от рабочих проводов Запрещена!
- Нельзя использовать для заземления электропроводки квартиры коммуникации общего назначения(трубы отопления,водоснабжения, арматуру в стенах)
- Нельзя подключать нулевой защитный проводник к независимым («чужим») шинам заземления. Если такие есть у вас на лестничной площадке.
- Сопротивление изоляции должно соответствовать данным таблице ниже:
Согласно ПТЭЭП (Правила технической эксплуатации электроустановок потребителей), Приложение 3; 3.1 (часть таблицы 37), минимально допустимые значения сопротивления изоляции электроустановок напряжением до 1000 В :
| ||
Распределительные устройства, щиты и токопроводы | 1000-2500 | 1,0 |
Электропроводки, в том числе осветительные сети | 1000 | 0,5 |
Стационарные электроплиты | 1000 | 1,0 |
Силовые кабельные линии | 2500 | 0,5 |
Обмотки статора синхронных электродвигателей | 1000 | 1,0 |
Специально для сайта: Все про ремонт квартиры
Графические обозначения в электрических схемах
В части графических обозначений в электрических схемах ГОСТ 2.702-2011 ссылается на три других ГОСТ:
- ГОСТ 2.709-89 «ЕСКД. Обозначения условные проводов и контактных соединений электрических элементов, оборудования и участков цепей в электрических схемах».
- ГОСТ 2.721-74 «ЕСКД. Обозначения условные графические в схемах. Обозначения общего применения»
- ГОСТ 2.755-87 «ЕСКД. Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения».
Условные графические обозначения (УГО) автоматов, рубильников, контакторов, тепловых реле и прочего коммутационного оборудования, которое используется в однолинейных схемах электрических щитов, определены в ГОСТ 2.755-87.
Однако, обозначение УЗО и дифавтоматов в ГОСТ отсутствует. Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено. А пока, каждый проектировщик изображает УЗО по собственному вкусу, тем более, что ГОСТ 2.702-2011 это предусматривает. Достаточно привести обозначение УГО и его расшифровку в пояснениях к схеме.
Дополнительно к ГОСТ 2.755-87 для полноты схемы понадобится использование изображений из ГОСТ 2.721-74 (в основном для вторичных цепей).
Все обозначения коммутационных аппаратов построены на четырех базовых изображениях:
с использованием девяти функциональных признаков:
Наименование | Изображение |
1. Функция контактора | |
2. Функция выключателя | |
3. Функция разъединителя | |
4. Функция выключателя-разъединителя | |
5. Автоматическое срабатывание | |
6. Функция путевого или концевого выключателя | |
7. Самовозврат | |
8. Отсутствие самовозврата | |
9. Дугогашение | |
Примечание: Обозначения, приведенные в пп. 1 — 4, 7 — 9, помещают на неподвижных контактах, а обозначения в пп. 5 и 6 — на подвижных контактах. |
Основные условные графические обозначения, используемые в однолинейных схемах электрических щитов:
Наименование | Изображение |
Автоматический выключатель (автомат) | |
Выключатель нагрузки (рубильник) | |
Контакт контактора | |
Тепловое реле | |
УЗО | |
Дифференциальный автомат | |
Предохранитель | |
Автоматический выключатель для защиты двигателя (автомат со встроенным тепловым реле) | |
Выключатель нагрузки с предохранителем (рубильник с предохранителем) | |
Трансформатор тока | |
Трансформатор напряжения | |
Счетчик электрической энергии | |
Частотный преобразователь | |
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления автоматически | |
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством вторичного нажатия кнопки | |
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством вытягивания кнопки | |
Замыкающий контакт нажимного кнопочного выключателя без самовозврата с размыканием и возвратом элемента управления посредством отдельного привода (например, нажатия кнопки-сброс) | |
Контакт замыкающий с замедлением, действующим при срабатывании | |
Контакт замыкающий с замедлением, действующим при возврате | |
Контакт замыкающий с замедлением, действующим при срабатывании и возврате | |
Контакт размыкающий с замедлением, действующим при срабатывании | |
Контакт размыкающий с замедлением, действующим при возврате | |
Контакт замыкающий с замедлением, действующим при срабатывании и возврате | |
Катушка контактора, общее обозначение катушки реле | |
Катушка импульсного реле | |
Катушка фотореле | |
Катушка реле времени | |
Мотор-привод | |
Лампа осветительная, световая индикация (лампочка) | |
Нагревательный элемент | |
Разъемное соединение (розетка):гнездоштырь | |
Разрядник | |
Ограничитель перенапряжения (ОПН), варистор | |
Разборное соединение (клемма) | |
Амперметр | |
Вольтметр | |
Ваттметр | |
Частотометр |
Обозначения проводов, шин в электрических щитах определяется ГОСТ 2.721-74.
Наименование | Изображение |
Линия электрической связи, провода, кабели, шины, линия групповой связи | |
Защитный проводник (PE) допускается изображать штрихпунктирной линией | |
Графическое разветвление (слияние) линий групповой связи | |
Пересечение линий электрической связи, линий групповой связи электрически не соединенных проводов, кабелей, шин, электрически не соединенных | |
Линия электрической связи с одним ответвлением | |
Линия электрической связи с двумя ответвлениями | |
Шина (если необходимо графически отделить от изображения линии электрической связи) | |
Ответвление шины | |
Шины, графически пересекающиеся и электрически не соединенные | |
Отводы (отпайки) от шины |
Что лучше: стабилизатор vs реле
Нередко вместо подключения в щитке реле контроля электрики рекомендуют устанавливать в доме стабилизатор напряжения. В отдельных случаях это бывает оправдано. Однако есть ряд нюансов, о которых надо помнить при выборе того или иного варианта защита электроприборов.
В плане функционала стабилизатор не только выравнивает напряжение, но и отключается при слишком высоких показателях последнего. А реле напряжения – это исключительно защитная автоматика. Вроде бы первый включает в себя функции второго.
Но по сравнению с РКН стабилизатор:
- дороже и шумит;
- более инертен при резких перепадах;
- не имеет возможностей для регулировки параметров;
- занимает гораздо больше места.
При уменьшении входного напряжения, чтобы на выходе стабилизатора были нужные показатели, он начинает “втягивать” в себя больше тока из сети. А это прямой путь к перегоранию проводки, если она изначально не рассчитана на подобное.
Второй основной минус стабилизатора в сравнении с реле контроля – это его неспособность перехватить резкий скачок напряжения при обрыве нуля.
Достаточно буквально полусекунды с 350–380 Вт в розетке, чтобы вся техника в доме погорела. А большинство стабилизаторов не способно подстроиться под такие изменения и пропускает высокий вольтаж, отключаясь только через 1–2 секунды после начала всплеска.
Помимо стабилизаторов и реле для защиты линии от перепадов вольтажа в сети также можно применять расцепители максимального и минимального напряжения. Но у них в сравнении с РКН большее время срабатывания. Плюс они не включают питание обратно в автоматическом режиме, по работе больше походят на УЗО.
После отключения электроэнергии эти расцепители придется переключать в исходное состояние вручную.