Как определить качество электроэнергии — нормы и параметры оценки

Что такое качество электроэнергии

Измеритель качества электроэнергии

Показатели качества для каждого типа электрической магистрали установлены по-разному. Фактические параметры должны полностью соответствовать установленным в нормативной документации. Именно эта особенность определяет качество предоставляемой услуги.

Изменения или преобразования ПКЭ возникают в результате утраты ресурса при транспортировке на большие расстояния, электромагнитных явлениях или аномальных увеличениях нагрузок на магистрали.

Чтобы оценить качество электричества, требуется провести замеры основных показателей. Детально изучить их можно в нормативных документах ГОСТа № 13109-97.

Основные требования к электрической энергии

Прежде чем рассмотреть о качестве этого товара, следует понять, как его (качество) можно регулировать. Отвечая на этот вопрос, следует обратиться к различным техническим условиям и стандартам. Кроме этого стоит внимательно изучить договор между потребителем и поставщиком. Документом самого высокого уровня стоит считать ГОСТ.

В регламентирующих документах прописаны следующие стандарты:

  • Отклонение от номинального показателя, определяемое благодаря усреднению за период в 1 минуту реального значения напряжения.
  • Амплитуда изменения напряжения. Для определения этого параметра рассматриваются некоторые колебания реального значения на временном отрезке длительностью 1 минута.
  • Доза фликера или мера воздействия мерцания света, способная оказать влияние на психическое состояние человека. Для определения данного показателя используется значения частоты мерцания и амплитуды, которые сравниваются с показателями, полученными опытным путем.
  • Коэффициент искажения. Это кривая напряжения, являющаяся фрагментом синусоиды. Общий показатель искажения определяется пиковыми значениями основного порядка.
  • Коэффициенты n-ой гармонической составляющей разности потенциалов. Это соотношение реального показателя напряжения гармоники порядка n к фактическому напряжению основного порядка.
  • Коэффициенты несимметричности напряжений.
  • Отклонения частотных показателей.
  • Продолжительность провала напряжения. Представляет собой отрезок времени, на протяжении которого напряжение падает ниже предельно допустимого значения.
  • Импульсное напряжение.
  • Коэффициенты временного перенапряжения.

4.Перегрев цепи нейтрали

Одной из причин перегревания цепи нейтрали является эффект гармоник, кратных трем. Высшие гармоники тока, кратные трем, в трехфазных сетях вызывают специфический результирующий эффект. Гармоники, кратные третьей, суммируются в проводнике нейтрали. В результате, с учетом того, что они составляют большую долю в действующем значении фазных токов, общий ток в нейтрали может превышать фазные токи.

Другая причина перегрева – несимметрия фазных токов и напряжений, когда возникает ток нулевой последовательности. Этот эффект вызван неравномерным распределением однофазных нагрузок по фазам.

Проблема № 2. Наличие высших гармоник в сети

Качество электроэнергии определяется амплитудой, частотой и наличием искажения формы сигнала, идущего от системы электроснабжения. «В то время как первые две характеристики в значительной мере зависят от электроснабжающей компании, форма волны (напряжения или тока) искажается потребителями. Ведь в настоящее время большинство типовых нагрузок на предприятиях являются нелинейными, например, работа частотно-регулируемых приводов, выпрямителей, ИБП, компьютеров, энергосберегающих ламп и т.д. Вышеперечисленные устройства потребляют ток источника, не соответствующий форме волны напряжения, в итоге она искажается высшими гармониками», — поясняет Виталий Побокин, главный инженер проектов . Высшие гармоники являются растущей проблемой для поставщиков и потребителей электроэнергии, так как ведут к:

  • снижению эффективности и увеличению энергопотребления;
  • перегреву кабелей, электродвигателей и трансформаторов;
  • повреждению чувствительного оборудования;
  • срабатыванию автоматических выключателей;
  • выгоранию предохранителей;
  • преждевременному износу оборудования;
  • перегреву и выходу из строя конденсаторов;
  • появлению сильных токов в нейтральных проводах;
  • возникновению резонанса в сети;
  • отказу в подключении к электроснабжающим сетям в случае слишком высокого уровня гармоник.

На сегодняшний день самым современным и эффективным решением по компенсации высших гармонических составляющих является использование активных фильтров (АФГ). Они строятся, например, на модулях IGBT (биполярный транзистор с изолированным затвором) и цифровых сигнальных процессорах (ЦСП).

Принцип применения АФГ прост: силовая электроника используется для генерирования гармонических токов, в противофазе тока гармоник, вызванных работой нелинейных нагрузок, таким образом, чтобы синусоида сохраняла максимально правильную форму.

Рис. 3. Схема подключения активного фильтра гармоник

При помощи трансформаторов тока измеряется ток нагрузки, который анализируется ЦСП для определения картины спектра гармоник. Полученные данные используются генератором тока для производства и инжекции в сеть именно такой гармонической величины (по амплитуде, форме и фазе), которая необходима для компенсации искажений нагрузки в следующем цикле синусоиды тока.

Так как активный фильтр работает на основе данных, получаемых от трансформатора, оборудование динамически адаптируется к изменениям в гармониках нагрузки. В связи с тем, что процессы анализа и генерирования контролируются программным обеспечением, устройство легко программируется на компенсацию только отдельных гармоник.

Рис. 4. Активные фильтры гармоник

Разработка системы управления качеством электроэнергии с функциями диагностики качества электроэнергии

В последнее время развитие ИТ-технологий привело к распространению систем мониторинга качества электроэнергии, соединённых друг с другом по сети и обменивающихся данными, поскольку такие сети обеспечивают потребителям подробную информацию в отношении качества электроэнергии. Такие системы могут выдавать аварийные сигналы и показывать информацию о событиях качества электроэнергии. Однако при наступлении события качества электроэнергии потребителям трудно определить его причины и принять решение, потому что эти системы не обеспечивают возможность диагностики качества электроэнергии. Задачей системы управления качеством электроэнергии является предоставление потребителям различных функций диагностики качества электроэнергии, которые могли бы помочь принять необходимые меры в необходимом месте.

В последнее время качество электроэнергии стало серьёзной проблемой, как для поставщиков электроэнергии, так и для потребителей. Раньше от поставщиков требовалось только обеспечение электрической энергией без отключений. Но теперь потребители начали предъявлять более высокие требования к качеству электроэнергии, что связано с серьёзными изменениями в системах энергоснабжения, которые существенно затрагивают этот аспект. Во-первых, получили широкое распространение изделия силовой электроники. Так как эти устройства имеют нелинейную зависимость между напряжением и током, они ухудшают качество электроэнергии. Во-вторых, электрические нагрузки стали более требовательными к качеству питания. Например, известны своей чувствительностью к качеству электроэнергии высокотехнологичные ИТ-устройства, регулируемые приводы, оборудование для управления технологическими процессами и компьютеры. Даже незначительные «события качества электроэнергии» могут привести к их повреждению, сбоям в работе или выходу из строя аппаратной части.

Наконец, децентрализация рынка электроэнергии вносит значительные изменения во всю систему энергоснабжения. В традиционной системе энергоснабжения цены и условия обслуживания единообразны по причине монопольности поставщика. В децентрализованной энергосистеме монополия поставщика будет разделена на многие компании, такие как генерирующие компании, сетевые операторы, продавцы электроэнергии и энергосервисные компании. Каждая из этих компаний должна нести ответственность за ухудшение качества электроэнергии для других или поддерживать качество электроэнергии согласно контрактам. Поэтому при возникновении того или иного события качества электроэнергии могут возникать затруднения с определением его причин и поиском ответственного. В результате становится всё более и более важным точное измерение уровня качества электроэнергии и определение причин его ухудшения. Поэтому устройства точного мониторинга качества электроэнергии имеют хорошие перспективы.

В последнее время развитие ИТ-технологий привело к тому, что нормой стали системы мониторинга качества электроэнергии, соединённые друг с другом по сети и обменивающиеся данными, поскольку такая сеть дает потребителям доступ к подробной информации по качеству электроэнергии. Во многих случаях с целью локального управления качеством электроэнергии данные анализа нескольких систем мониторинга собираются через сетевое соединение на графическом интерфейсе пользователя (GUI). Системы GUI могут выдавать сигналы оповещения и показывать информацию о событиях качества электроэнергии в удобной для потребителей форме.

Однако при наступлении события качества электроэнергии потребителям трудно определить его причины и принять решение, т.к. рассматриваемые системы не обеспечивают диагностику качества электроэнергии. Была разработана система управления качеством электроэнергии с целью дать потребителям различные функции диагностики качества электроэнергии, которые могут помочь принять необходимые меры в необходимом месте.

Далее представлена подробная структура и функции системы управления качеством электроэнергии, которая состоит из системы мониторинга качества электроэнергии (СМКЭ), системы GUI и системы диагностики качества электроэнергии (СДКЭ). Также приведены некоторые результаты практического применения функций диагностики электроэнергии.

Несинусоидальность

Мы все больше обрастаем электроникой. Вот и источники света стали светодиодными. Но полупроводниковые приборы потребляют не синусоидальный, а импульсный ток. Что не может не сказаться на форме кривой напряжения во всей сети.

В результате в ней появляются гармоники – общая форма кривой напряжения раскладывается на основную с частотой 50 Гц, и дополнительные – с частотами, большими 50 в 1, 2, 3 и более раз.

Работа электрооборудования не рассчитана на наличие гармоник. При превышении их уровня те же самые полупроводниковые электроприборы, из-за которых появляются гармоники, от них же и страдают.

Классификация проверок

В зависимости от цели контроль качества распределяется на 4 вида:

  • оперативный;
  • инспекционный;
  • диагностический;
  • коммерческий учет.

Виды анализа имеют свои особенности, характеристики и целевое назначение. Необходимость проведения той или иной инспекции определяется узкими специалистами на основе общепринятых стандартов работы электрических сетей.

Диагностический вид контроля, предназначен для решения спорных вопросов между поставщиком и потребителем. Он проводится в местах распределения электричества между двумя сторонами договора. На основе полученных данных, создается официальный отчет, позволяющий доказать невыполнение правил соглашения. После рассмотрения отчета, виновная сторона будет обязана устранить нарушения и повысить качество электроэнергии.

Инспекционный контроль проводится сертифицированными службами с целью выявления отклонений от официальных требований и нормативов. Аудит является обязательным для всех сторон договора и проводится с определенной периодичностью.

При возникновении дефектов проводится оперативный контроль. Он выявляет реальные и потенциальные угрозы понижения качества электричества в сети. В результате проверки проводятся мероприятия по устранению нарушений работы и профилактические процедуры.

Коммерческий учет, предназначен для рассмотрения ставок и тарифов поставщика. Анализ осуществляется в местах раздела электросети между двумя сторонами договора. Исследование назначается при необходимости определения уровня надбавок и скидок за предоставленное качество ресурса.

Измерение параметров качества электроэнергии

Практика эксплуатации энергохозяйства предприятия подтверждает, что с целью организации на предприятии энергоэффективного электроснабжения, необходимо регулярно (не реже раза в год) производить контроль параметров качества поступающей электроэнергии.

Не секрет, что существующие распределительные электрические сети имеют большой физический износ, большая часть трансформаторных подстанций перегружена. Эти и другие факторы приводят к отклонению параметров поступающей в нашу сеть электроэнергии от нормируемых, что приводит к различным негативным факторам в электрической сети. Среди таких факторов — увеличение реактивных токов, снижение уровня питающего напряжения (равно как и чрезмерное увеличение), искажение синусоиды, повышенные гармоники и т.д.

Значительное отклонение параметров качества электроэнергии питающей сети не позволяет эксплуатировать должным образом подключенные к ней электроустановки, а в ряде случаев это вообще запрещено. Так, например, снижение питающего напряжения на обмотках трехфазного электродвигателя приводит к повышению токов, протекающих в его обмотках, что в свою очередь приведет к повышенному нагреву изоляции, и к преждевременному выходу из строя оборудования или к сокращению его номинальной службы.


Снижение питающего напряжения на обмотках трехфазного электродвигателя приводит к повышению токов, протекающих в его обмотках

Для решения этой задачи, с помощью измерительного приборного комплекса необходимо произвести измерение токов и напряжений питающей сети на головном участке схемы, а в дальнейшем, при выявлении значительных отклонений, на всех отходящих фидерах.

Таким образом, в распоряжении энергетической службы предприятия, будут находится как протокол измерений, с указанием всех нормируемых параметров электроэнергии, так и непосредственно интервальные графики нагрузок и мгновенных значений токов и напряжений. Данная информация позволяет принять своевременные как организационные, так и технические мероприятия, позволяющие предотвратить ненормальные (аварийные и предаварийные) режимы работы электрооборудования, а также позволяет снизить величину технических потерь электроэнергии, разгрузить питающие линии электропередач.

Комплекс измерения параметров качества электроэнергии, включает в себя:

  • измерение и регистрация основных показателей качества электроэнергии (ПКЭ), установленных ГОСТ Р 54149-2010;
  • измерение и регистрация электроэнергетических величин, таких как коэффициент мощности (cos φ), провалы напряжения, размах изменений напряжений, параметры временных перенапряжений, действующее значение тока по трем фазам, установившееся значение напряжений и отклонения.

На основании измеренных амплитудных и мгновенных значений напряжений и токов по трем фазам рассчитываются значения полной мощности, активной мощности, коэффициента мощности и ряда других параметров:

  • Действующее значение фазного напряжения (TRMS).
  • Действующее значение линейного напряжения (TRMS).
  • Действующее значение токов (TRMS).
  • Полная мощность.
  • Активная мощность.
  • Коэффициент мощности, по соотношению мощностей или из ряда Фурье.
  • Действующее значение напряжения 1-ой гармоники.
  • Действующее значение токов 1-ой гармоники.
  • Активная мощность первой гармоники.
  • Коэффициент мощности.
  • Коэффициент искажения напряжения.
  • Коэффициент искажения тока.
  • Значения 3,5,7,9-40 гармоник в процентах от U1.
  • Значения 3,5,7,9-40 гармоник в процентах от I1.
  • Провалы.
  • Перенапряжения.
  • Импульсы.
  • Коэффициент несимметрии по обратной последовательности.
  • Частота напряжения

Итогом проведения измерений является протокол показателей качества электроэнергии по полученным данным, в соответствии с ГОСТ, а также график электрических нагрузок с приложением базы данных поинтервальных значений измеренных параметров.

Результатом работ по измерению показателей качества электроэнергии являются графики нагрузок (токовых значений, коэффициентов мощности, напряжения, синусоидальности), а также «Протокол параметров качества электроэнергии».

Пример формы грозовых импульсов

С помощью программного обеспечения измерительного комплекса проводится анализ параметров работы системы электроснабжения, выявляется приближение параметров к границе опасной зоны, что дает возможность эксплуатирующей организации своевременно принять необходимые меры, или обратиться в свою энергоснабжающую организацию с требованием устранить выявленные несоответствия.

Кандидат технических наук С.В. Добров.

Что происходит при отклонении от нормальных режимов питания

От качества поставляемого энергоресурса напрямую зависит мощность, производительность и срок службы электротехнических приборов, особенно в промышленных масштабах. Снижение эффективности магистралей приводит к повышению потребляемой электроэнергии. В двигателях приборов снижается момент вращения, осветительные приборы регулярно мерцают, все виды ламп достаточно быстро выходят из строя.

Исследования в области физики давно показали, что при постоянной нагрузке на двигатель уменьшение напряжения приводит к стремительному повышению силы тока, что отрицательно сказывается на работоспособности, производительности и сроках службы бытовой техники и прочих электротехнических приборов. Это приводит к сгоранию электронных плат, провода с изоляционным материалом могут расплавиться.

Критерии оценки питающей сети

Что же содержит ГОСТ? Качество электроэнергии определяется характеристиками трёхфазных сетей и распространенных в быту цепей частотой 50 Гц:

  • Установившееся значение отклонения напряжения определяет величину характеристики, при которой потребители могут функционировать без сбоя. Устанавливается нижний нормальный предел от 220 В это 209 В и верхний равен 231 В.
  • Размах изменения входного напряжения представляет собой разность величин действующей и амплитудной. Замеры производят за цикл перепада параметра.
  • Доза фликера подразделяется на кратковременную в пределах 10 минут и длительную, определяемую 2 часами. Обозначает степень восприимчивости человеческого глаза к мерцанию света, причиной которого стало колебание питающей сети.
  • Импульсное напряжение описывается временем восстановления, имеющего разную величину в зависимости от причины возникновения скачка.
  • Коэффициенты для оценки качества питающей сети: по искажению синусоидальности, значения временного перенапряжения, гармонических составляющих, несимметричности по обратной и нулевой последовательностях.
  • Интервал провала напряжения определяется периодом восстановления параметра, установленного согласно ГОСТ.
  • Отклонение питающей частоты приводит к повреждениям электрических частей и проводников.

Рассмотрение основных показателей

Качество электроэнергии определяют уровнем соотношения установленным значениям определенных показателей. Все параметры электрической энергии большую часть времени в сутках (95%) должны соответствовать нормальным установленным значениям и не превышать данный предел.

ГОСТ 13109-87 разделяет показатели качества на два категории: основные и дополнительные. Основные определяют свойства электроэнергии. В данную подгруппу входит 9 характеристик напряжения и 1 характеристика частоты. Рассмотрим ряд основных показателей более подробно.

Отклонение напряжения

. Оказывает наибольшее влияние на работу потребителей. Нагрузки, уровни напряжения и другие параметры способны изменяться во времени. Исходя из этого, значение падения напряжения также является переменным. При этом, значительное снижение напряжения на промышленных предприятиях оказывает негативное воздействие на общую производительность труда, отрицательно сказывается на зрении рабочего персонала. Также, снижение напряжения оказывает влияние на продолжительность большинства технологических процессов в электротермической и электролизной установках. Помимо этого, несоответствие уровня напряжения необходимым значениям приводит к потере напряжения и мощности.

Советуем изучить — Соленоиды — устройство, работа, применение

В сетях до 1 кВ допустимое отклонение напряжения ±5 %, максимальное ±10 %. В сетях 6-20 кВ принята величина максимального отклонения ±10 %.

Размах изменения напряжения.

Этот параметр качества электроэнергии представляет собой разницу между амплитудным или действующим значением перед и после его изменения. Частота повторения данных изменений может быть от 2 раз/мин. до 1 раза/ч. Столь резкие изменения в трехфазной сети могут быть вызваны, к примеру, работой дуговой сталеплавильной печи либо сварочного аппарата. Нормирование колебаний напряжения основывается на необходимости защиты зрения людей. Для каждого вида ламп устанавливается свое отдельное значение размаха. Чтобы обеспечить соблюдение данного показателя качества рекомендуется применять отдельное питание для электроприемников сети освещения и силовых нагрузок.

Доза колебаний напряжения

, которая является аналогом предыдущего показателя качества электрической энергии, они взаимозаменяемы. Нормирование дозы колебаний в электросетях проводится только при наличии в них определенных приборов.

Длительность провала напряжения

. Провалом является резкое уменьшение напряжения, после чего оно обратно восстанавливается до своей изначальной, либо приближенной величины спустя определенный временной промежуток. Длительность провала отражает время от начального момента провала до момента его восстановления. Продолжительность провала может быть как в один период, так и в десятки секунд. Согласно ГОСТ этот параметр может достигать 30 секунд в сетях до 20 000 Вольт.

Импульсное напряжение

схоже по описанию провалу, однако его продолжительность иная, и составляет от нескольких микросекунд до десяти миллисекунд. Допустимые значения данного показателя качества электроэнергии стандартом не нормируется.

Характеристиками напряжения также являются четыре коэффициента: гармонической составляющей, несинусоидальности кривой, нулевой и обратной последовательности.

Характеристикой частоты выступает отклонение. Наибольшее отклонение частоты возникает, если нагрузки изменяются медленным темпом, а резерв мощности невелик. Нормальная допустимая величина отклонения ± 0,2 Герц, максимальная ± 0,4 Герц. В послеаварийных режимах допустим интервал отклонения от + 0,5 до — 1 Герц (не более девяноста часов в году).

Дополнительные показатели качества электроэнергии являются формой записи основных. Сюда входят 3 следующих коэффициента, характеризующих напряжение: амплитудной модуляции, а также небаланса фазных и междуфазных напряжений.

Отклонение частоты

Соблюдение частоты в определенных границах относится к необходимому требованию потребителя. При снижении показателя на 1 %, потери составляют более 2 %. Это выражается в экономических затратах, снижение производительности предприятий. Для обычного человека это приводит к повышенным суммам в квитанциях по оплате за электричество.

Скорость вращения асинхронного двигателя напрямую зависит от частоты питающей сети. Нагревающие ТЭНы имеют меньшую производительность при снижении параметра меньше 50 ГЦ. При завышенных значениях может происходить повреждение потребителей либо других механизмов, не рассчитанных на высокий момент вращения.

Отклонение частоты может повлиять на работу электроники. Так на экране телевизора возникают помехи при изменении показателя на ±0,1Гц. Кроме визуальных дефектов, возрастает риск вывода из строя микроэлементов. Методом борьбы с отклонениями качества электроэнергии выступает введение резервных питающих узлов, позволяющих в автоматическом режиме восстанавливать напряжение в установленные промежутки времени.

Что влияет на характеристики питающей сети?

Качество электроэнергии зависит от огромного числа факторов, изменяющих показатели сверх установленных нормативами пределов. Так, напряжение может оказаться завышенным из-за аварии на подстанции. Заниженные значения появляются в вечернее время суток или в летний сезон, когда люди возвращаются домой и включают телевизоры, электрические плиты, сплит-системы.

Качество электроэнергии согласно ГОСТам может незначительно колебаться. В очень плохих питающих сетях потребителям приходится пользоваться стабилизаторами напряжения. Контроль над характеристиками возложен на Роспотребнадзор, куда можно обращаться при возникающих несоответствиях.

Качество электроэнергии может зависеть от следующих факторов:

  • Суточных колебаний, связанных с неравномерным подключением потребителями либо с влиянием приливов и отливов на морских станциях.
  • Изменениями воздушной среды: влажности, образование льда на питающих проводах.
  • Изменением ветра, когда питание вырабатывают ветровики.
  • Качеством проводки, со временем она изнашивается.

Советуем изучить — Электростатика в картинках

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий